Dynamic Task Execution Using Active Parameter Identification With the Baxter Research Robot

TitleDynamic Task Execution Using Active Parameter Identification With the Baxter Research Robot
Publication TypeJournal Article
Year of Publication2017
AuthorsWilson, A. D., J. A. Schultz, A. Ansari, and T. D. Murphey
JournalIEEE Transactions on Automation Science and Engineering
Volume14
Issue1
Pages391-397
Abstract

This paper presents experimental results from real-time parameter estimation of a system model and subsequent trajectory optimization for a dynamic task using the Baxter Research Robot from Rethink Robotics. An active estimator maximizing Fisher information is used in real-time with a closed-loop, non-linear control technique known as Sequential Action Control. Baxter is tasked with estimating the length of a string connected to a load suspended from the gripper with a load cell providing the single source of feedback to the estimator. Following the active estimation, a trajectory is generated using the trep software package that controls Baxter to dynamically swing a suspended load into a box. Several trials are presented with varying initial estimates showing that estimation is required to obtain adequate open-loop trajectories to complete the prescribed task. The result of one trial with and without the active estimation is also shown in the accompanying video.

DOI10.1109/TASE.2016.2594147
Publication PDF: 
Supplemental Files: