Reducing Driver Distraction with Touchpad Physics

TO THE FACULTY OF THE DEPARTMENT OF MECHANICAL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

MASTER OF SCIENCE

in Mechanical Engineering

By

Joseph Mullenbach

EVANSTON, ILLINOIS

May 16th, 2013
Acknowledgements

I would like to thank all of the study volunteers as well as those who contributed to the development and execution of this study and provided helpful critiques of previous versions of this paper. Special thanks to: Ed Colgate, Mike Blommer, Michael Peshkin, Pietro Buttolo, Reates Curry, Radhakrishnan Swaminathan, Samantha Hopkins, Jeff Greenberg, Tom Dalka, and Louis Tijerina.

This material is based upon work supported by the Center for the Commercialization of Innovative Transportation Technology (CCITT), a USDOT Tier II University Transportation Center operated within The Transportation Center at Northwestern University. This material is also based upon work partially supported by the National Science Foundation under Grant No 0964075.
Contents

Acknowledgements ... ii

Contents ... iii

List of Tables ... v

List of Figures ... vi

Abstract .. 1

Introduction ... 1

Background .. 3

 Multiple Resource Theory ... 3
 Driver Distraction and Eyes-Off-Road Time .. 3
 Touchscreens in vehicles .. 4
 Haptic Augmented Screens ... 5
 TPaD .. 6
 Research Questions ... 7

Experiment .. 7

 Equipment ... 7
 TPaD Variable Friction Display ... 7
 VIRTTEX .. 8
 Eye Tracking .. 8

 Study Protocol ... 9
 Tasks ... 9
 Haptic Interface Design ... 9

 Targeting Task ... 11
 Slider Adjustment Task ... 11
 Driving Environment .. 12

 Participants .. 14
 Pre-Drive Training ... 14
 Drive .. 15

Results ... 16
Eye Glance Behavior ... 16
Task Performance .. 20
User Evaluation... 23

Task Load Comparison .. 23
 System Usability Survey ... 23
 Haptic Feedback Evaluation... 23
 Free Response- ... 24
User Evaluation Results .. 24
 Visual vs. Visual Plus Haptic ... 25
 Haptic vs. Visual Plus Haptic ... 26
Discussion ... 27
 Significance of Eyes-Off-Road Time .. 27
 Performing Tasks Without Visual Feedback 28
 Task Completion Time .. 28
 Subjective Response .. 30
 Design Recommendations ... 31
Conclusion ... 32

Works Cited .. 33

Appendix A: Additional Figures ... 35

Appendix B: VIRTTEX Protocol & Script ... 38

Appendix C: Program Code ... 46
 Target GUI .. 46
 Slider GUI ... 47
List of Tables

Table 1- Total Eyes-Off-Road Time Per Task Values Page 18
Table 2- Individual Glance Duration Values Page 19
Table 3- Maximum Glance Duration Page 20
Table 4- Total Task Completion Time Values Page 22
Table 5- Significance levels comparing visual to visual plus haptic for task load questionnaire Page 26
List of Figures

Figure 1- In vehicle setup of the touch surface and screen Page 2
Figure 2- Exterior of VIRTTEX driving simulator Page 9
Figure 3 - The visual and haptic task displays Page 11
Figure 4- Driver in VIRTTEX driving simulator Page 13
Figure 5- The driving environment showing the lead vehicle and erratic vehicle Page 13
Figure 6 – Total Eyes-Off-Road Time Per Task Page 18
Figure 7- Individual Glance Duration Page 19
Figure 8- Maximum Glance Duration Page 20
Figure 9 – Task Percentage Correct Page 21
Figure 10- Total Task Completion Time Page 22
Figure 11- Task load responses for target task Page 25
Figure 12- Task load responses for slider task Page 25
Figure 13- System usability survey responses Page 27
Figure 14- Haptic feedback evaluation Page 27
Figure 15- Percentage of tasks with greater than 2 seconds total EORT Page 35
Figure 16- Percentage of tasks completed without a single glance away from the road Page 35
Figure 17- Median Headway Time Page 36
Figure 18- Difference in Vehicle Speed Max-Min Page 36
Figure 19- Standard Deviation of Lane Position Page 37
Abstract

Once the domain of purely physical controls such as knobs, levers, buttons, and sliders, the vehicle dash is rapidly transforming into a computer interface. This presents a challenge for drivers, because the physics-based cues which make traditional controls easy to operate with limited visual confirmation are absent on traditional screens. We investigate the addition of programmable physics-based cues to a visual display as a method to reduce eyes-off-road time. A TPaD variable friction touchpad was installed in the Ford VIRTTEX motion driving simulator. Subjects performed target acquisition and slider adjustment tasks under visual, visual/haptic, and haptic feedback conditions. For the two tasks, we found that the visual/haptic condition resulted in 39% and 19% decreases in total eyes-off-road time per task while showing negligible differences in task performance. Subjects showed a clear preference for combined visual and haptic feedback.

Introduction

For automobile interfaces, physical control objects such as knobs, levers, buttons, and sliders have served well, evolving with the car itself to suit the unique demands of a potentially stressful and distracting environment. However, the modern vehicle has transformed into a computer platform, and the amount of information that drivers can access and interact with within a vehicle has greatly increased in recent decades. In-vehicle information systems (IVIS) include navigation systems, entertainment systems, climate control systems, and vehicle performance systems, all of which demand display space and interaction elements. Traditional automobile-style controls having dedicated buttons for each function simply cannot keep pace. As they have for cell phones, designers are turning to touch based screen interfaces as the answer.
Screens by themselves are visual feedback devices, and interacting with them places a demand on the driver to look away from the road. In this research, we investigate the addition of force cues to the visual display as a possible method to reduce eyes-off-road time. A TPaD variable friction display was installed into the Ford VIRTTEX driving simulator as is shown in Figure 1.

The device operates similar to a laptop touchpad but with the addition of variable friction haptic feedback on the touch surface. Drivers were asked to complete two simple tasks under three different feedback conditions: visual only, visual plus haptic, and haptic feedback only.

The contributions of this research are as follows:

1. Measurement of total eyes-off-road time for the completion of tasks while driving in a high-fidelity simulator, showing a significant reduction for tasks with haptic feedback.

2. Development of interaction techniques that allow simple tasks to be accomplished via haptic feedback with limited or no visual confirmation.
3. User survey data indicating a preference for tasks with both visual and haptic feedback, and indicating a positive response to the TPaD interface in general.

This paper begins with a review of screen interfaces in vehicles, driver distraction, and past research on adding physicality to screens through haptic feedback. The experimental setup and interface design are then described, followed by results, discussion and concluding remarks.

Background

Multiple Resource Theory

A fundamental assumption of human cognition is that we have a limited pool of mental resources, and if the demand exceeds the resources available, the brain becomes overloaded and performance decreases. According to multiple resource theory, presenting redundant task information across different sensory modalities makes task processing easier and reduces the demand on mental resources [1]. This theory has been studied in numerous contexts using multimodal feedback, typically visual and either audible or haptic modes. In a meta-analysis of 43 multimodal studies in different environments, visual/auditory and visual/haptic feedback were found to reduce reaction times and improve performance scores, but not reduce error rates [5]. This study also found that visual/haptic feedback was more effective than auditory feedback under high workload or multitask conditions.

Driver Distraction and Eyes-Off-Road Time

When a single sensory modality is presented with more information than it can comfortably handle, the person resorts to adaptive behavior. When presented with visual tasks while driving for example, drivers resort to visual time sharing, pulling their eyes and attention away from the road. Besides being an indication of overload, driver eye glance behavior is a safety relevant measure, because it affects the
driver's situational awareness. A driver's situational awareness can be reduced as glances away from the road scene ahead are longer, more frequent, or further away from the road scene. For example, one driving simulator study found that the longest 22% of in-vehicle single glances away from the road scene were associated with 86% of collisions [18]. Based on a naturalistic driving study which videotaped 100 drivers over the course of a year, the US National Highway Traffic Safety Administration estimates that drivers taking their eyes off the forward roadway is a contributing factor to 60% of crashes, near crashes and incidents [21]. Specifically, they report that total glance times away from the road of 2.0 seconds or more within a 6 second interval increased crash risk by a factor of at least two relative to normal, baseline driving (i.e., randomly selected 6 second driving periods).

Touchscreens in Vehicles

While their near ubiquity speaks to the success of touchscreens as a computer interface, their introduction into vehicles has received mixed reception. High spatial resolution and the fact that they can be changed on the fly means that much more information can be conveyed in the same space, resulting in a much larger number of options for the user. At the same time, the driving environment is visually demanding, and these displays only add to visual demand. The traditional vehicle control elements have evolved over time to have physical properties like shape, texture, stiffness, and kinematic affordances that are conducive to purely haptic operation. For example, it is possible to feel for, acquire and operate a physical knob or slider without visual confirmation. However, the hard, flat surfaces of graphical interface objects offer no such tactile or kinesthetic feedback, and the user necessarily must rely on visual confirmation to complete any task [8].
Haptic Augmented Screens

Automakers have sought to decrease the visual demand of screens in a variety of ways. Strategies include duplicating touchscreen functionality with dedicated physical controls, bypassing the screen altogether with voice based interactions, and creating multipurpose physical interfaces with which to navigate the screens [15, 19]. For example, BMW offers a multifunction knob to navigate screens, and Lexus offers a type of force feedback joystick. While these adapted physical controllers do add haptic feedback that is otherwise lacking on screens, they separate the controller from the controller display, and are not reconfigurable to the degree that on-screen controls are. One manufacturer, Cadillac, offers vibrotactile feedback on their in-dash touchscreen displays [15, 19]. This method begins to approach the promise of a reprogrammable physics display as it provides vibration feedback directly from the screen itself.

There have been many studies involving haptic feedback within a driving environment [17, 22, 30, 31, 34]. In a study of multimodal versus unimodal warning signals for rear end collisions, it was found that drivers responded significantly faster (~25%) to an additional vibratory warning signal than to brake lights alone [17]. Furthermore, there have been automotive environment studies involving haptic feedback on a touchscreen display. Using a custom touchscreen with vibration feedback on both the finger and the wrist, Vilimek and Zimmer found a reduction in task viewing time and total eyes-off-road time [34]. In an exploratory study with their custom built HapTouch display, Richter et al. show a trend toward reduced error rates and input time with vibratory haptic feedback for small on-screen elements [31]. With a vehicle-avoidance task, Lee and Spence [22] investigated tri-modal feedback using a TouchSense display, using a short 50Hz vibration as haptic confirmation. Pitts et. al.[30], also investigated tri-modal touchscreen feedback involving visual, audible, and a “crisp click” haptic vibration from an Immersion TouchSense display. Using the lane change test [25], they were unable to find
evidence of objective benefits in driving or task performance, but did note subjective benefits in the form of hedonic rating scores.

TPaD

While these automotive touchscreen studies have been carried out with vibrotactile haptic feedback, this feedback form is but one of a new class of surface haptic feedback methods including electrovibration, shape-changing, skin stretch, friction control, and force control which are opening up the possibility of programmable touch surface physics [2, 9, 10, 12, 16, 23, 28]. No such studies have been done using force-based feedback as we do here. In this research, we evaluate the in-vehicle use of a TPaD display in a touchpad configuration. The TPaD is capable of controlling the coefficient of friction, and consequently lateral resistance force between the surface and the user’s fingertip through ultrasonic vibration of the screen normal to the surface. While touchpads have been researched as in-vehicle interfaces in the past [6, 7], and are even offered on certain Audi vehicles [15], the addition of the variable friction display allows surface force cues to be designed into the interaction.

Past studies have shown that variable friction haptic displays are able to increase performance for a simple targeting task [23]. It is not clear, however, that this performance advantage carries over to the driving environment. Indeed, it is not obvious that the effect should be felt at all in a vehicle environment as it has been shown that vibration sources, like those which are present in a vehicle, can mask haptic perception [12]. Task completion time improvements of fractions of a second are likely more significant for frequent interactions with a tablet or laptop compared to less-frequent interactions with displays within the vehicle. What becomes more important in a driving environment, however, is the amount of visual attention and consequently, the amount of eyes-off-road time that the task requires.
Research Questions

The research questions addressed in this paper stem from assessing the suitability of variable friction displays and by extension, programmable physics displays in general as in-vehicle control interfaces. Are users able to take advantage of physics-based cues in a complex driving environment which includes other forces and vibrations? Is surface haptic feedback alone enough to complete a task successfully, or must it be coupled with visual feedback? Does the additional feedback result in less eyes-off-road time? Will users prefer the haptic feedback, and will it make for a more satisfying experience?

Experiment

Equipment

TPaD Variable Friction Display
The TPaD (tactile pattern display) in this study was not set up in a touchscreen configuration, which is different from past devices [23, 26]. Rather, the display screen and the touch surface were decoupled as in a laptop touchpad. The touch surface was placed below the center console, to the right of the floor shifter as is shown in Figure 1. Past research has shown the resting position of the dominant hand to be the preferred location for a touchpad [6]. This allows the driver to rest his or her arm in a comfortable position throughout repeated experimental trials.

The touch surface was a square piece of glass with a usable surface area of 3” x 3”. The construction of the TPaD surface, drive electronics, and the finger position sensing system is identical to the ActivePaD surface haptic device and its operation is fully explained in previous publication [26]. Because the surface of the TPaD is not completely uniform in its friction reduction, past targeting experiments have chosen to design tasks which only utilize uniform areas of the surface [23, 24]. For this study however, it
was decided to treat the entire screen as if it were uniform which is considered to be a more realistic use case.

VIRTTEX
Ford’s VIRtual Test Track EXperiment (VIRTTEX) is a motion-based driving simulator with force feedback and a surrounding visual environment. VIRTTEX is designed to accommodate a full-size, interchangeable vehicle cab, with a model year 2007 Ford Edge used as the test vehicle for this study. Tactile, visual, and sound cues are provided to the driver in order to fully immerse drivers into the driving task. Realistic road, wind, and engine sounds are played over a sound system [3]. The vehicle cab includes a steering control loader for accurate feedback of road and tire forces to the driver. The visual system in VIRTTEX is a front-projection display system onto a spherical display surface of radius 3.7 m. It covers full 360° viewing angles at 60 Hz refresh rate including an LCD monitor in the rear cab to provide the appropriate view for the rear-view mirror.

The vehicle rests on a motion platform that is hydraulically powered in 6 degrees of freedom (Figure 2) [13, 14]. The motion system has a bandwidth in excess of 13 Hz in all degrees of freedom. It is capable of up to .6 G of acceleration in the longitudinal and lateral directions over a displacement of +/- 1.6 m. It is meant to create a realistic, precisely controlled, and repeatable environment in which to conduct driving experiments.

Eye Tracking
A Seeing Machines faceLAB eye-tracking system was used to track the driver’s gaze. Horizontal and vertical gaze coordinates generated by faceLAB in a world coordinate system were used to generate a Road/Not Road binary signal. This signal indicates whether the driver was looking to the exterior driving environment or somewhere in the vehicle interior. Extremely short looks away from the road (e.g., eye blinks) are removed by further processing the Road/Not Road signal according to SAE J2396 [32].
Study Protocol

Tasks
The tasks for this experiment were chosen to each represent a class of actions that are taken on screen interfaces. The first, the targeting task, represents general target acquisition tasks such as selecting a button. Ultimately, for any location-based control displayed on the screen, the user must acquire it. The second task, the slider adjustment, represents any task requiring the selection of one choice among many. This includes a menu selection, a scroll wheel selection, or selection among an array of buttons.

Haptic Interface Design
The haptic representations of these two tasks were developed via an iterative design process including interaction with pilot subjects, and guided by two main design principles. The first design principle was that the tasks should be achievable without visual feedback. That is, the haptic feedback should not only add to the experience, it should also communicate enough information as to stand alone.
The second design principle was that the physics of the display should assist in completing the task. For example, a selection location should resist motion away from it, and a transition location should encourage motion through it. In this way, friction control is used as a way to afford movement. When friction is low, movement is afforded in both planar directions. When friction is high, no movement is afforded.

The fact that movement cannot be selectively afforded in one planar direction while restricted in the other had interesting consequences on the design of the tasks. For example, early prototypes of the slider adjustment task involved a circular knob that would slide in the horizontal direction. When the knob was acquired, friction was turned low in order to allow the finger to slide freely. However, since the finger was free to slide in the vertical direction as well, the user would often accidentally slide vertically off of the knob, causing confusion and invariably a look back to the screen to see what had happened. Since this violated the first design principle, the slider knob was changed to a vertical bar (Figure 3b), turning its acquisition into a one dimensional task.

Using the physics of the display to assist in task completion has been shown in at least one case to increase quantitative measures of task performance [23]. However, while testing prototypes, users would not always prefer physically assistive designs over alternatives. Given two choices of detent design, for example (low friction normally with high friction detents or high friction normally with low friction detents), there was no consensus on which was subjectively better. When probed further for the reasoning behind their preferences, users would describe different interpretations or mental models of what they saw and felt on the screen. Effort was taken therefore, to remove multiple interpretations by reinforcing the correct mental model through visuals and through the description of the task.
Targeting Task
The target task is shown in Figure 3a. The target area is represented visually by a gray vertical bar, and the finger touch location is represented by a black vertical line. The target area is represented haptically by a high friction vertical bar of the same size as the visual while the rest of the screen is low friction. The task was to “acquire” the target by sliding the finger to within the target area. Subjects were instructed to place their finger down anywhere on the screen, slide all the way to the left until they hit the side of the screen, and then slide to the right and acquire the target, finally lifting their finger off the screen to indicate that they are done. The location of the target randomly varied between 45, 50, 55, or 60 mm from the starting line, which was defined as 8 mm from the left edge of the screen to account for the width of the finger. The width of the target area was 4 mm for all tasks.

![Figure 3 - The visual (top) and haptic (bottom) task displays. Black indicates high friction and white low friction. (a) Targeting task. (b) Slider task before bar acquisition. (c) Slider task after bar acquisition.](image)

Slider Adjustment Task
For the slider adjustment task, shown in Figures 3b and 3c, the gray vertical bar is the slider bar, and it can be slid to the left or right to any of the positions marked with a gray tick mark. The user acquires the slider bar by sliding over it, and the bar then follows the finger until it is lifted off the screen, at which point the bar snaps to the closest tick mark. A visual cue of a black dot represents the finger location...
until the bar is acquired. At that point, the dot disappears and the slider bar turns transparent (Figure 3c).

The haptic rendering initially is similar to the targeting task, a low friction screen with a high friction vertical bar (Figure 3b). Once the slider bar is acquired, low friction areas (detents) become active between the tick marks (Figure 3c). The low friction areas are separated by a center distance of 10.5 mm and are a width of 1.0 mm. The net result of this haptic design is that the finger slips and moves rapidly through the detent while resisting motion away from the tick mark. The task was to adjust the slider bar to the right by a randomly varied number of ticks between 2 and 4 as was requested in a voiceover.

Driving Environment
The driving environment was designed to be controlled and repeatable, but also to have moderate attentional demands as a real-world driving environment would. In addition to the driver, an observer rode in the vehicle at all times for safety precautions, and a simulator operator in the control room was available via intercom. Figure 4 shows a driver within the simulator during a drive. The environment was a four lane urban road with 3.2 m lane widths and moderate traffic both oncoming and passing to the left. There were stoplights, but they were always green. The driver was instructed to stay in the right lane for the entire drive, neither passing nor merging.
Drivers were also instructed to follow a lead vehicle (Figure 5) within a safe following distance, defined as 2-4 second headway at 40 mph or 36-74 m. During the drive, the next task would not begin if the vehicle exceeded this bound or was out of a 35-45 mph speed range. In these cases, the driver was given 10 seconds to return to a safe following distance. If they remained outside the bounds longer, the simulator operator would instruct them to either catch up to or fall back from the lead vehicle.

While the aforementioned steps of removing the common attentional demands of lane changing and stopping were taken to create uniformity across the drive, a reasonable amount of demand was desired.
To that end, a detection task involving an “erratic vehicle” was added. The erratic vehicle drove ahead of the lead vehicle, and at random intervals would swerve over half way (1.6 m) into the lane to the left (Figure 5) or half way onto the shoulder to the right. Each partial lane deviation lasted for 3 seconds: one second for the vehicle to deviate half a lane width, one second at the half-lane-width deviation, and one second to move back into its lane. The subject was instructed to watch for this, and announce whenever they spotted the erratic driver by saying “left” or “right” respectively.

Participants
Twenty five volunteers were recruited from an email sent to over 1000 Ford employees over an internal listserv. Respondents were directed to a website to fill out demographic and screening information. Right handed subjects [24/25] were preferentially recruited because the touchpad was setup in position for the right hand. Subjects without eyeglasses were also preferentially recruited [21/25] due to limitations of the eye tracking equipment. The subjects were balanced across age [13 18-40; 12 40+] and gender [12 male]. Subjects were asked how often they drive with 23 responding “almost daily” and 2 responding “at least weekly.” Subjects were also asked how often they interact with a touch-screen device. 18 responded “almost daily”, 2 “at least weekly,” 2 “at least monthly,” and 3 responded “not at all.” This study was approved by the Institutional Review Board of Northwestern University, and all subjects gave informed consent.

Pre-Drive Training
In order to ensure consistency of instruction between subjects, a script was followed. The training began with a VIRTTEX safety video. This was followed by a short introduction to the drive which emphasized that their primary task was to drive safely, including detecting the erratic vehicle. The touchpad tasks were introduced as secondary tasks that they should “do their best” to complete while still driving safely.
Participants were allowed to interact with the tasks before the drive. They were first told to “explore the task” and figure out how it worked on their own, and then were given specific instructions of how to complete each task. Subjects practiced each of the two tasks with each of the three feedback conditions. They completed each a minimum of 5 times and were allowed to continue practicing until they responded that they were confident that they could complete the task.

Surface moisture is known to have a significant effect on the coefficient of friction of the fingertip [29, 33]. In order to reduce the variability of the effect, each subject was asked to rub their first two fingers of their right hand in magnesium carbonate (climber’s chalk) and then wipe off the excess dust. In order to prepare the surface uniformly for each subject, the glass surface was wiped with a dry paper towel. While fingertip pressure is known to affect friction as well [11], no attempt was made to control it. Rather, in training, subjects were instructed to try applying different amounts of pressure with either of their fingers in order to find a level that felt good to them. During the drive, they were left free to switch fingers as they saw fit.

For many participants, the TPaD generates a high frequency noise when it is on and in contact with the finger. In order to mask this, pink noise was added to the simulator audio and played on over-the-ear headphones during the entire experiment. The level of noise was set in training by having the subject interact with the device while listening for the device noise, gradually increasing the pink noise until the subject indicated that they could no longer hear the device.

Drive

The driving portion of the study began with 2 practice trials for each task and feedback case combination. The main study began with the targeting tasks and concluded with the slider tasks. The study was designed to be entirely within subject with every subject completing the same number of the
same tasks. The task trials were administered in 6 blocks of 5 for the targeting task and 6 blocks of 4 for the slider task for a total of 54 task repetitions. Each block contained a single feedback case of visual only, visual plus haptic, or haptic only. The order of the blocks was generated pseudo-randomly with the same feedback case not allowed to repeat twice in a row.

Each block was introduced by a recorded, computer generated voiceover announcing “Do targeting (or slider) task until further notice” followed by a second voiceover announcing “Touch feedback on (or off).” For the slider adjustment tasks, an additional voiceover indicating the target, “Increase by 3 (or 2, 4)” was played before each task. A ding indicated when to begin each task, and after completing each task, the subject was instructed to say “done” aloud. These two events marked the beginning and end of the task interval. The experiment took one and a half hours in total with the drive portion lasting approximately twenty minutes.

Results

Eye Glance Behavior

Eye glances away from the forward roadway were analyzed for each driver. Specifically, the durations of individual eye glances away from the road during each task were calculated by analyzing the eye-tracking signal described earlier. Eye glances initiating before the start of the task interval but continuing into it as well as glances initiating during the task interval and continuing past its end are included in the sum. The total eyes-off-road time (EORT) per task, individual glance duration, and maximum glance duration are reported below and additional measures are available in the appendix. No distinction was made between specific gaze locations when looking away from the road, but since the driving tasks were uniform, any glances to locations other than the display or touchpad can be treated as noise.
Total EORT per task, defined as the sum of the individual glance durations within the task interval, was computed for all tasks. There is one data point for each task, and if there were no glances away from the road during the task, the number is reported as zero. These data are plotted in Figure 6 as a function of both task type and visual/haptic feedback and Table 1 contains median and quartile values. All outliers were confirmed for accuracy with video review. Initial review of the data revealed that the distribution of data points had major clusters at zero glance duration. Because of this, non-parametric analysis was used. For the targeting task, the key results show a 0.67 second decrease in median total EORT per task (39%) between the visual (V) and the visual plus haptic (VH) cases. A Mann-Whitney test confirmed that this result was significant (U = 43000, p = 2E-17, r = 0.55). For the slider task, between V and VH, there is a corresponding decrease of 0.41 seconds (19%) in median total EORT per task (U = 24000, p = 7E-4, r = 0.24). Additionally, 24% of the VH targeting tasks were completed without a single glance away from the road, as well as 10% of the VH slider tasks. No V tasks were completed without a glance away from the road (See plot in appendix). As is to be expected, the haptic only (H) cases resulted in significantly less EORT than either V or VH for both tasks.
The data for individual glance duration include a data point for every glance away from the road during all tasks. If there were multiple glances within one task, they are each reported individually, and if there were zero glances within a task period, there are no data points represented for that task. For the targeting task, there is a 0.17 second decrease (28%) in median glance duration between the visual and the visual plus haptic cases ($U = 82000, p = 3E-12, r = 0.45$). For the slider task, there is a decrease of 0.24 seconds (25%) in median glance duration ($U = 96000, p = 5E-6, r = 0.32$).

Table 1 – Total Eyes-Off-Road Time Per Task Values

<table>
<thead>
<tr>
<th>Total Glance Duration (sec)</th>
<th>Lower Quartile</th>
<th>Median</th>
<th>Upper Quartile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targeting V</td>
<td>1.36</td>
<td>1.72</td>
<td>2.24</td>
</tr>
<tr>
<td>Targeting VH</td>
<td>0.21</td>
<td>1.05</td>
<td>1.79</td>
</tr>
<tr>
<td>Targeting H</td>
<td>0.0</td>
<td>0.0</td>
<td>0.57</td>
</tr>
<tr>
<td>Slider V</td>
<td>1.42</td>
<td>2.19</td>
<td>2.79</td>
</tr>
<tr>
<td>Slider VH</td>
<td>0.92</td>
<td>1.78</td>
<td>2.59</td>
</tr>
<tr>
<td>Slider H</td>
<td>0.0</td>
<td>0.26</td>
<td>0.70</td>
</tr>
</tbody>
</table>
Maximum glance duration takes only the maximum length glance duration per task period with one data point per task. If there were no glances away from the road during that period, max glance duration is reported as zero. For the targeting task, median duration is reduced by 0.45 seconds (34%) for VH compared to V (U = 43000, p = 8E-18, r = 0.55). For the slider task, median duration is reduced by 0.31 seconds (19%) for VH compared to V (U = 24000, p = 3E-5, r = 0.29). While these data mimic the previous plots, maximum glance duration gives insight into the behavior and has safety implications.
Task Performance

Each task was evaluated as successfully completed or not. For the target task, success was defined as the last finger position before liftoff being within the bounds of the target bar. The results are plotted in Figure 9. The V and VH cases of the target task had a success ratio of 92.4% and 89.1% respectively with a 20% drop to 69.1% for the H case. For the slider task, success was defined as a match between the position of the slider at the end of the response interval and the position which was instructed. The
slider task had a success ratio of 96.4% and 95.8% for the visual and visual plus haptic cases with a 45.8% drop to 50.0% for the haptic only case.

![Figure 9 - Task Percentage Correct](image)

Task completion time was also measured for each task and is displayed in Figure 10 and Table 4. The total task completion time is defined as the total amount of elapsed time between the first touch and the last finger removal from the touchpad within the analysis interval. For the targeting task, the visual plus haptic case was found to have significantly shorter (0.27 seconds) completion time than both the visual only case ($U = 22000, p = 7E-8, r = 0.34$), and the haptic only case ($U = 32000, p = 9E-5, r = 0.25$). For the slider task, the visual plus haptic case was found to have significantly shorter completion time than the haptic only case ($U = 23000, p = 2E-7, r = 0.37$), but no significant difference was found compared to the visual case.
Table 4 - Total Task Completion Time Values

<table>
<thead>
<tr>
<th>Total Task Completion Time (sec)</th>
<th>Lower Quartile</th>
<th>Median</th>
<th>Upper Quartile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targeting V</td>
<td>1.60</td>
<td>1.94</td>
<td>2.44</td>
</tr>
<tr>
<td>Targeting VH</td>
<td>1.34</td>
<td>1.67</td>
<td>2.02</td>
</tr>
<tr>
<td>Targeting H</td>
<td>1.46</td>
<td>1.90</td>
<td>2.39</td>
</tr>
<tr>
<td>Slider V</td>
<td>1.68</td>
<td>2.23</td>
<td>2.79</td>
</tr>
<tr>
<td>Slider VH</td>
<td>1.89</td>
<td>2.34</td>
<td>3.10</td>
</tr>
<tr>
<td>Slider H</td>
<td>2.22</td>
<td>2.94</td>
<td>3.95</td>
</tr>
</tbody>
</table>

Measures of driving performance were also measured and computed, but no significant differences between the tasks were found. This is likely due to the relatively short time periods that were required to complete the tasks. Plots of vehicle speed change, median headway time, and standard deviation of lane position can be found in the appendix.
User Evaluation

After the drive was completed, each participant was asked to complete a series of questionnaires.

Task Load Comparison

In order to assess the participants’ perception of demand, each was given a task load comparison questionnaire derived from the NASA Task Load Index [27]. Each question is intended to measure a separate dimension of workload. This compared the targeting and slider tasks, each as a function of the three feedback conditions. Each question was presented with three 5 point scales, one for each feedback condition. The scales were labeled 1-5, with descriptors “Very Low” and “Very High” at 1 and 5 respectively. The questions were as follows:

TL1. How mentally demanding were the tasks?
TL2. How visually demanding were the tasks?
TL3. How successful were you in accomplishing what you were asked to do?
TL4. How hard did you have to work to accomplish your level of performance?
TL5. How insecure, discouraged, irritated, stressed and annoyed were you?

System Usability Survey

Selected questions were taken from the SUS system usability scale [4]. Subjects were instructed to consider the system as the haptic feedback system, and to think of the tasks that contained both visual and haptic feedback. Each statement was rated on a 5 point scale from greatly disagree (1) to greatly agree (5):

SU1. I think that I would like to use this system frequently.
SU2. I thought there was too much inconsistency in this system.
SU3. I would imagine that most people would learn to use this system very quickly.
SU4. I found the system very cumbersome to use.
SU5. I felt very confident using the system.
SU6. I would turn this system off if it were in my car.

Haptic Feedback Evaluation

The haptic feedback evaluation was meant to capture subjective impressions of the system as a whole and not particular tasks. Each question was rated on a 5 point scale from greatly disagree (1) to greatly agree (5):
agree (5). While you were driving, did you notice the tactile feedback? If so, would you agree that the tactile feedback was...

HF1. Weak?
HF2. Preferred?
HF3. Annoying?
HF4. Matched the visuals?
HF5. Helpful?

Free Response-
Finally, in order to capture greater depth of understanding, the final questionnaire was open-ended typed free response.

FR1. What was your impression when you felt the haptic feedback for the first time?
FR2. How did you complete the target acquisition task in the different cases? (visual only, haptic plus visual, haptic only)
FR3. How did you complete the slider task in the different cases? (visual only, haptic plus visual, haptic only)
FR4. What did you like about the haptic feedback?
FR5. What didn’t you like about the haptic feedback?
FR6. Free response. Please expand on any previous questions, and add comments.

User Evaluation Results

The distribution of responses for the task load comparison questionnaire (TL1-TL5) of V, VH and H are plotted in Figures 11 and 12. The red vertical lines and corresponding values indicate the means.
Visual vs. Visual Plus Haptic

Pairwise comparisons were done on the results of the task load assessment between the V and VH cases. For the targeting task, the VH case was rated significantly more favorably than the V case in every workload dimension. Significance levels from Wilcoxon signed rank tests are shown in Table 5 with significant results highlighted blue. Subjects found the VH condition to be the least mentally demanding with 12 of 23 participants responding “very low.” Despite showing identical visual displays, the VH case was reported as less visually demanding than the V case with 21 of 23 responding “low” or “very low” for the target task. For the slider adjustment task, VH was rated as requiring significantly less mental and visual demand, as well as requiring the user to work less hard than in the V case. Significant results are also in Table 5 as well as being noted with a green connecting bar in Figures 11 and 12. For example, in
Figure 11, the distribution plots of V and VH for mental demand are connected by a green bar and are thus indicated significant, while the plots of VH and H for mental demand are not.

TL1. Tar. Mental Demand	W(18) = 36.0	p = .027
TL3. Tar. Success	W(16) = 30.0	p = .041
TL4. Tar. How Hard Work	W(18) = 30.5	p = .014
TL5. Tar. How Insecure	W(11) = 7.5	p = .020
TL1. Slider Mental Demand	W(17) = 6.0	p = .0005
TL2. Slider Visual Demand	W(17) = 21.0	p = .006
TL3. Slider Success	W(13) = 30.5	p = .364
TL4. Slider How Hard Work	W(18) = 36.5	p = .027
TL5. Slider How Insecure	W(12) = 16.5	p = .078

Table 5- Significance levels comparing visual to visual plus haptic for task load questionnaire

Haptic vs. Visual Plus Haptic

Pairwise comparisons were also done on the results of the task load assessment between the H and VH cases. For the slider task, the VH case was rated as significantly less mentally demanding than the H case (W(18) = 6.0, p = .0005). Subjects rated the VH case was as being significantly more successful for both the targeting (W(15) = 18.0, p = .0144) and the slider (W(18) = 17.0, p = .0021) tasks. Subjects also rated the VH case as requiring them to work less hard than the H case for both the targeting (W(15) = 22.0, p = .0269) and the slider (W(17) = 14.5, p = .0029) tasks. Finally, the VH case was rated as causing significantly less insecurity and discouragement for both the targeting and slider tasks (W(12) = 5.5, p = .0054; W(15) = 4.5, p = .0005).

The general trend in these responses is for VH to be rated most favorably. For every question, including those found to be not significant, the mean response value indicates a favorable (or tied) mean task load rating for the VH case compared to either the V case or the H case.

Subjects reported high success for all cases of both tasks, with greater success for the VH case and less success for the H case. This result is slightly at odds with the actual success rate, indicating that the
addition of haptic feedback to the visual case increased the users’ perception of success without increasing the actual success rate.

The results of the system usability survey are shown in Figure 13, and the haptic feedback evaluation in Figure 14. The mean responses of both the haptic feedback evaluation and the system usability survey all favored haptic feedback.

![Figure 13- System usability survey responses. 1 = greatly disagree, 5 = greatly agree (SU1-SU6)](image)

![Figure 14- Haptic feedback evaluation. 1 = greatly disagree, 5 = greatly agree. (HF1-HF5)](image)

Discussion

Significance of Eyes-Off-Road Time

The primary finding of this paper is that by adding haptic feedback to an otherwise visual task on a touchpad, drivers spend significantly less time looking away from the road. Many subjects described a strategy where they attempted to complete the task as best they could without looking away from the road, then taking a quick glance to the screen to confirm their selection. Said one participant, “For the visual, I looked at the screen the entire time. For the combined haptic and visual I completed the task without looking and then looked briefly to make sure I was in the bar.” This is a significant positive
change in behavior, as longer glances (those over 2.0 seconds) have been observed to result in increased risk of crash or near-crash involvement [21].

Performing Tasks Without Visual Feedback

Users were technically able to perform the tasks without any visual feedback, but their success ratio was greatly reduced for the haptic only cases. The success rates for these tasks in particular are likely too low for use in a driving environment. Subjects performed much better (Figure 9) and also perceived their performance as improved (Figures 11, 12) when given both of the two feedback modes and allowed to choose. This is supported by the fact that 24% of the targeting tasks and 10% of the slider tasks were performed without a single glance away from the road in the VH case. Said one user about the visual plus haptic target task, “At first I looked toward the screen, after a couple of times though, I didn’t need to look any longer.” This anecdote was confirmed in the data.

It is also interesting to see that though there was nothing for the drivers to see by looking at the screen, there were nonetheless many eyes-off-road glances for the haptic only feedback cases. One user’s comments may provide insight into this, “For the haptic only, I looked involuntarily the first couple times and then seemed to get used to doing it without looking.” While this study focused on a vehicle environment, the car is only one example of an environment with limited sight or split attention. The device may be suitable for other visually demanding environments as well.

Task Completion Time

For the targeting task, a significant reduction was found in the median task completion time from the addition of haptic feedback. This result agrees with past experiments involving multimodal feedback [5], and also supports a previous finding for a similar task involving a variable friction display in a single-task laboratory setting [23].
In a driving study involving bimodal feedback from a vibrotactile touchscreen, Pitts et. al investigated a post-hoc addition of a “crisp click” haptic effect to a standard automotive human-machine interface (HMI) [30]. They found no significant effect on task completion time. However, a previous study [34] reports significant decreases in both total eyes-off-road time and task completion time for a visual plus haptic vibration feedback mode compared to visual alone. While [34] lists “horizontal and vertical sliders” as one of the task types, details about the task and feedback design are unknown. Also, the results of many different task types are grouped together in the reported result, so it is not possible to compare directly.

Since these two studies [30, 34] involve different haptic effects and different tasks it is not entirely surprising that they conflict. However, in the current study, a significant decrease in task completion time was found for the VH case of the targeting task, but a small (but not significant) increase in task completion time was found for the corresponding slider task. We propose that haptic feedback in general is not enough to reduce task completion time, but that the task and the design of the haptic effect are critical factors as well. While we attempted to design assistive haptic effects in this study, the implementation was not entirely successful, as the tasks were not successfully completed in a large fraction of haptic only tasks. This can be interpreted as the haptic interaction not communicating enough information to stand alone. Further study is needed into best practices for haptic design, and perhaps new device capabilities need to be developed, such as the ability to selectively control the direction of force, affording movement in one direction while restricting another.
Subjective Response

The most interesting result from the subjective data is a clear preference for the addition of haptic feedback to the visual display. The numerical responses are supported by the comments:

“Haptic plus visual was the most helpful one, followed by haptic only because then I did not have to take my eyes off the road. Visual only was the most difficult one because I had to dedicate my whole attention to the screen.”

“It was a good addition to the visual feedback and once you get used to it allowed you to place more focus on the driving.”

“...The combination was the best use because I could leave my eyes on the road and was relying on multiple senses.”

“Visual was fine but haptic plus visual was clearly the best.”

As is supported by the numerical responses to the system usability and haptic feedback evaluation surveys, the written free responses indicate that most users had a positive opinion of the TPaD system overall. In response to the question, “What didn’t you like about the haptic feedback?” two users expressed that the feedback was weak and difficult to feel, while one user reported a numb feeling in both of the fingers they used on the screen. In response to the question, “What did you like about the haptic feedback?” nine users expressed that they liked being able to keep their eyes on the road, while seven users independently ventured that they liked the way that it felt.

To our knowledge, this experiment was the first instance of testing a variable friction display within a vibrating and accelerating environment. Though a direct comparison between a moving driving simulator and a motionless environment was not made, vehicle motion seemed not to interfere with the operation or the sense of the haptic feedback. From the results of the total EORT measurements and the lack of any user comments to the contrary, it is inferred that the haptic effects could be distinguished during motion.
Design Recommendations

Informal observation suggests that the subjects continued to become more comfortable and capable with the TPaD as the drive went on. Said one subject of their first impression, “interesting, never really used it before, easy to figure out, didn't take long to figure. after 5 minutes, could do it quick.” This suggests a progression of learning that may not only increase the performance of these relatively simple tasks over time, but may also allow the progression to more complicated, multi-step tasks. Because the variable friction display is so novel, it is recommended that new users are allowed to ease into the feeling, first just experiencing it, then moving to simple tasks, and then to tasks that require finer distinction, higher spatial resolution, more complex physics, and multiple steps.

Because users voiced a strong preference for visual plus haptic over haptic alone, it is recommended that visual cues accompany haptic feedback for most applications. However, despite the measured decrease in success rate for these tasks, haptic only tasks should not be abandoned for future interface designs. Said one subject, “Visual and haptics together really easy, surprised at how easy just haptics were still.” There are many variables which may improve the success rate of haptic only interactions including increased effect strength, improved device design, different types of tasks, or simply better task design. These tasks used only the modulation of friction in a binary type “full on/ full off” mode. It is likely possible to improve the performance and increase the task complexity without visuals through the use of friction gradients and textures, and with surface haptic devices capable of active forcing [10, 26].

While it is shown here that the addition of programmable physics to a touchpad display can improve performance and user preference, it is not necessarily always so. For early prototypes, it was not uncommon that users would respond that they preferred the haptic feedback off, or that they would be unable to complete the task without visual feedback. If the physical cues are ambiguous or otherwise
confusing, they are as likely to hurt as to help. As with any other interface, thoughtful design is critical to successful implementation.

Conclusion

We found that adding haptic feedback to the visual display resulted in a 39% decrease in total eyes-off-road time per task for the target acquisition task and a 19% decrease for the slider adjustment task. A significant reduction in task completion time was found for the targeting task as well. We also found that subjects were able to complete the tasks with only the haptic display, but with a 20% and 45.8% reduction in success for the target and slider tasks respectively. Subjective responses were favorable for the system as a whole, and also showed a preference for the visual plus haptic feedback condition.

To our knowledge, this is the first experiment involving a programmable friction display in a driving environment. While improved user experience and preference perhaps are able to stand alone as strong reasons for continued development and deployment of programmable friction displays, the results of this study show that tasks can be designed to improve measures of driver attention and task performance as well.
Works Cited

27. NASA. Nasa Task Load Index (TLX) v. 1.0 Manual (1986).

Appendix A: Additional Figures

Figure 15- Percentage of tasks with greater than 2 seconds total EORT

Figure 16- Percentage of tasks completed without a single glance away from the road
Figure 17 - Median Headway Time

Figure 18 - Difference in Vehicle Speed Max-Min
Figure 19 - Standard Deviation of Lane Position
Appendix B: VIRTTEX Protocol & Script

VIRTTEX Observer Protocol & Script for the TPAD Study

Before the subject arrives:
Log into the TPAD computer account
TPAD usb port should be plugged into computer, as well as Ethernet cable and power cable.
Turn TPAD power strip on.
On the desktop, open folder Joe Test xx.xx.xx then >ActivePaDGUI>ActivePaDGUI>ActivePaDGUI.pde
Processing will open, and press the play button in the upper left.

When the subject's arrives:
1. Subjects coming from outside may be given temporary access to the RIC. If this has not occurred, they have been told to call when they arrive at the old pool car entrance. The Observer should be available **15 minutes prior** to their session in preparation for the drive.
2. Once they arrive at the lab, introduce yourself and offer to hang up their jackets/coats in the cabinet, where they can also put purses and other personal items if they wish.
3. Take them directly to the simulator buck and have them adjust the seat and steering position to a comfortable position for them.
 a. Go around front of the vehicle and meet them at the driver's door. Open the door (if it is not already open) and point out the seat controls (fore/aft, up/down, and seat back tilt) **BEFORE** they get seated.
 - *This button moves the seat forward and backward. It also raises the seat up and down.*
 - *This button changes the seat back angle.*
 b. Also, point out the steering wheel adjustment level to change the steering wheel tilt.
 - *You can change the steering wheel tilt by forcefully pulling down on the lever under the steering column here.*
4. Work with the person calibrating the eye tracker to make sure the top of the forehead to the bottom of their chin can be seen in one camera and their eye brows to their bottom lip can be seen in the other camera. If not, first ask the participant if they can adjust the seat or the steering wheel slightly to achieve this if it is a minor adjustment needed. If this will not work (too tall and the seat is as low as it will go) slightly pitch the camera mount up or down to achieve this. Otherwise, move the stereo head fore or aft from the participant and you will need to refocus the cameras. The RIGHT camera focuses the eyes, the LEFT camera focus the full head shot. It is important
that the focus of the head and the eyes is relatively crisp because the 9-pt calibration will go woefully smoother.

5. Once you have focused the cameras, have the participant get out and escort them back to Subject Prep Area.
Once you get to the Subject Prep Area, assuming you have introduced yourself already:

(Subject name), I will be following a script for your session to ensure that all of our participants get the same consistent information since we have multiple experimenters implementing this study. I will prepare you for your drive today and I will also ride along with you during the drive. As we move through the training, ask all the questions you would like. Please have a seat here and I will start your preparation for the drive today.

1. The subject should already have two signed informed consent documents—one from Northwestern, and one from Ford. Before starting the video, ask if they have read and signed the documents. If not, give them the Informed Consent documents, and point out the Pre-Screening Self-selection list and Dome Evacuation Instructions card attached to the clipboard.

If they have not yet signed the form:
This is the Informed Consent for the study. Before signing it, please read over the Pre-screen Self-selection List and make sure you do not have any questions or concerns.

The Dome Evacuation Instructions card is also attached. These instructions can also be found in the simulator. In close to 4000 drives, we have never had to use the emergency escape, but it is part of our informed consent process. After you have signed the consent form, please put your current age at the top of the form here. I'll sign here as the witness and we'll make a copy to send with you.

2. Show them the VIRTTEX Safety DVD now. If you need to go back and help the eye tracking person re-calibration the Stereo-Head, now is the time. Make sure they fill in their age at the top of the Informed Consent. Do not fill in the subject # until after you have made a copy for them.

3. Make a copy of the informed consent and move on to the Study Introduction presentation

4. During the video, go to the VIRTTEX PC do the following:
 a. Wait for the operator to let you know they have restarted the Hawk web server.
 b. Double click on the Phrase selector web icon on the VIRTTEX PC desktop. This will open the Rhymes/Phrase Selector website.
 c. Enter the Subject's number [check with the Operator if you do not know it].

Let's move over to this computer and I will give you the study introduction, which will explain what you will be doing for the drive.
5. Next, go through the study introduction slides (TPAD_12_Introduction.ppt) icon in center of VIRTEX computer desktop), sticking closely to the wording on the slides.

This study involves interaction with your fingertips, and since everyone’s skin is a little bit different, we take precautions to ensure that we have consistent skin conditions. This is talc, and I’m going to have you dip your fingers on your right hand into it and rub it around. Here’s a towel to dust off any excess powder.

We're ready to go back into the simulation and prepare for the drive, so after I knock on the door and let the VIRTTEX Operator know we are ready, we will head this way.

6. If they have no questions, knock on the Control Room door and head to the dome.

In the dome with the subject:
1. Take subject to the dome.

As we head back to the simulator, go to the right around the vehicle again and get in, but leave the door open. I will close this door behind us and meet you at the driver's door to point out a couple things. Are you comfortable? Go ahead and put your seat belt on.

2. Once they are seated, have them put on their safety belt.

Once you have put the seatbelt on, it is important that you do not take it off until the entire simulation is over and I instruct you that it is safe to remove it. Removing your seatbelt or opening the door while the simulator is on will result in an emergency stop of the entire simulator.

3. Show them the location of the emergency stop button, which is different from the video and the side rear-view mirror controls.

Once you get a driving scene, you can adjust your center rear-view mirror manually as you would in your own vehicle. Once I close the door, you can adjust each side-view mirror by rotating this knob all the way right or left and then use the joystick function to position the mirror.
The Emergency Stop button is here, a different location than what was shown in the video because this is a different vehicle.

Final Observer steps in preparation for the drive:

1. Close the driver's door and let them know you are going to complete the eye tracking calibration on them. Go around to the rear passenger seat to train and follow the "How to calibrate the faceLab Eye Tracker" instructions.

 A few important things to remember about the eye tracker are to try to avoid placing your hand at 12 o' clock to steer position because it will block the camera view of your face. Finally, the side-to-side camera view is somewhat limited, so if you lean too far to the left or right, I may ask you to assume your initial up right & centered posture. Thanks in advance for your patience in helping us get great eye tracking data.

2. Complete the eye tracking calibration on the 1st 9 points,

 If you do not have any questions, I'm going to close your door and go around to the front passenger seat to train you on the driving tasks.

3. Follow the script for the TPAD_12_In_Vehicle_Instructions and let the subject follow along. Note that the training is colored. **Green** for Task #1, **Cyan** for Task #2, and **Blue** for Task #3. Once the training is complete …

 *I'm going to now get in the rear passenger seat. *(Operator's name), the VIRTTEX Operator, will do an intercom check with you as I get myself situated for the drive.*

4. As the Operator is touching base with the driver, get into the car and latch your seat belt.
5. Put on your head phones and make sure the VIRTTEX Operator can hear you and visa versa.
6. Record the temperature and humidity in laptop excel file

 *We will start the car engine for you, but after that you are in complete control. Once the visual scene is unfogged, *(Operator's name) will let you know to put your foot on the brake, put the car into drive, and accelerate the vehicle up to the posted speed limit.*

7. As the Operator goes "off the air" to get the simulation running, let the subject know that once the visual scene appears, all they have to do is put their foot on the brake, put the car into drive, and accelerate up to the posted speed limit.
8. Let them know from this point on, you will be their *silent* partner unless they have operational issues, which the VIRTTEX Operator will respond to 1st, unless you can see or resolve the issue easier (err on the side of silence).

Do you have any questions at this point? Once you begin driving, I will be mostly quiet until the end of the drive since the study is intended to simulate driving alone. On the desktop machine, play masking sound file.

At the beginning of the study drive:
Wait for the Operator to cue you to do a recorded start-of-the-drive calibration check. You will have to restart the `eye_calibration.py` GUI because driver software had to be restarted by the Operator. So, when the new scene restarts, that's when you know to restart the `eye_calibration.py` GUI.

Using the `eye_calibration.py` GUI on the in-vehicle desktop to move the red dots to the first 9 locations needed for the calibration.

<Wait for the operator's cue.>

Starting with the forward driving scene, in the upper left corner, just follow the red dot. Say "Yes" to acknowledge that you've gotten a good 1-second fixation on that location without blinking. Then, we can move to the next location.

- Points 1–9 (have them look at the red dot).

Inside the vehicle, will you look at the following locations:
- 5 on the RPM dial (point 10),
- 40 mph on the speedometer (point 11),
- the SYNC button (point 12),
- the Radio volume knob (point 13).

Thank you!

When the drive is over:
1. It is very important to remind them to keep their seat belt on until the Operator tells you (the Observer) that you can leave the vehicle. Compliment them on their performance and completing the drive. The `eye_calibration.py` GUI should still be up and running. All you have to do is advance it to point #1 to get started.

<Wait for the operator's cue.>

You did a great job. Please remember to keep your seat belt on until I tell you otherwise. We're going to have you look at the same calibration locations again. Just follow my lead:
Using the `eye_calibration.py` GUI on the in-vehicle desktop to move the red dots to the first 9 locations needed for the calibration.

Same procedure as before, starting with the forward driving scene, in the upper left corner, just follow the red dot. Say "Yes" to acknowledge that you've gotten a good 1-second fixation on that location without blinking. Then, we can move to the next location.

- Points 1 – 9 (have them look at the red dot).

Inside the vehicle, will you look at the following locations:
 - 5 on the RPM dial (point 10),
 - 40 mph on the speedometer (point 11),
 - the SYNC button (point 12),
 - the Radio volume knob (point 13).

Thank you!

2. Administer the SSQ while the simulator is docking using the paper form (before they leave the car). Fill out the subject number, gender, age, date, and your initials. Ask them for their age to record on the SSQ if you did not get it on the Informed Consent. Follow the script at the top of the SSQ form. Point out there is bottled water in the driver's door they can have while you are administering the questionnaire.

3. After you have taken the SSQ, if they have indicated moderate Simulator Sickness symptoms such as feeling a little dizzy or nauseous, encourage them to grab a bottle of water (or hand it to them). They will be seated in the car for another 10 minutes, so any side effects from the drive should subside by that time. If not, follow Adverse Effect procedures as described in VIRTTEX's Operating Policies and Procedures Manual.

4. If everything is fine, (*none to slight* answers for all of the questions), they can unbuckle and get out of the vehicle.

5. Bring the SSQ form with you when you leave the simulator buck and enter into the SSQ website. There are desktop links to this website on the VIRTTEX PC desktop and on the laptop near the printer, which will be logged into the VIRTTEX account.

Back in the subject prep room:

1. If the SSQ has not been done yet, do it at this time using the form. Check to see if they took the shuttle. If so, have them call (x58801) to arrange for the shuttle to pick them up.
2. Offer them refreshments at this time as well.
3. Have them complete the Post-drive Questionnaire using the website on the desktop (if the next subject is not here) or using the laptop on another desk.
4. Use the *Text Message Dictation Study Post-drive Questionnaire* website link on the desktop of both computers.

5. The Observer (you) should fill in their subject #, date, session time, and which SYNC method they used. Have the participant read the instructions in the **GREEN** box BEFORE completing the questionnaire.

Would you like to take a snack? *We’d like for you to fill out a short questionnaire about the touchscreen that you used in the simulator.*

6. Give them a copy of their signed *Informed Consent* to take with them.

Would you like a copy of the informed consent form? *Here's a copy of it to take with you. You can contact one of the principal investigators at the top of the consent form if you have any further questions about the study. Thanks again for coming over to participate in this study. We really appreciate your time.*

7. Get any personal items from the cabinet before directing them to the *old pool car lot access* door or back to the RIC lobby (if they have to catch the shuttle).

After every subject:
1. Place their *Informed Consent* in a separate "Informed Consent" folder in the *TXT_OUT11* drawer.

2. Indicate somewhere on the SSQ form that you have entered their data into the SSQ website and then place this form in the SSQ folder.

3. Be sure you are prepared for the next subject (Study Introductions, Phrase Selector website, Eye Tracker, Post Questionnaire participant information entered, and the consent form).

4. Clean the tpad glass surface with a glass cleaner wipe.
Appendix C: Program Code

Target GUI

TargetBar targetbar;
TargetBar targetbarRotate;

class TargetBar{
 float startPos[];
 float targetPos[];
 int startTime = 0;
 int state = 0;
 int correct = 0;
 EffectControls controlit;

 TargetBar(int value){
 startPos = new float[4];
 targetPos = new float[4];
 controlit = new EffectControls("-"+value+"- TargetBar", value);
 controlit.A.setPara("tarDist", 0, 7218, 10000);
 controlit.B.setPara("tarWidth", 0, 655, 2000); //655 = 4 mm, 525 = 3 mm
 controlit.C.setPara("none", 0, 5000, 10000);
 controlit.D.setPara("none", 0, 5000, 10000);
 controlit.E.setPara("tpad_on", 0, 1, 1);
 controlit.F.setPara("max tpad", 0, 50, 0);
 controlit.G.setPara("stiffness", 0, 300, 0);
 controlit.H.setPara("which button", 0, 6, 0);
 }

 void checkCorrect(){
 if(viewDisplay == 1){
 if(state == 2){correct = 2;}
 if(state == 1){correct = 1;}//currently out of target, will remain here if they pull off here
 //if(state == 0){nothing should happen, the correctness doesn't change with the finger off screen}
 }
 //if(state == 0){}
 else{correct = 0;}//resets correct
 }

 void drawit(){
 targetPos[X] = map(int(parA+1050), 0,10000,100,700);
 //xmap
 targetPos[XWIDE] = map(int(parB), 0,10000,0,600); //map size
 fill(200);
 rect(targetPos[X]-targetPos[XWIDE]/2, 0, targetPos[XWIDE], sizeY);
 }
}
Slider GUI

SlideX slideX; SlideX slideX2;

class SlideX{
 //float knobx = 400;
 //float knoby = 300;
 float enterRadX = 30;
 float enterRadY = 30;
 //float exitRad = 50;
 RectArea enterCirc;
 RectArea exitCirc;
 //CircleArea enterCirc;
 //CircleArea exitCirc;
 int tpadOut = 0;
 int tpadOutLast = 0;
 boolean acquired = false;
 Cursor knob;
 EffectControls controlit;
 RectArea[] RectArr;
 RectArea[] LineArr;
 ComboNum[] NumArr;
 int numRects = 9;
 int StartLevel = 5;
 int CurrentLevel = 5;
 int LastLevel = 5;
 boolean FingerActive = false;
 color LTgray = color(150,50);
 color gray = color(200);
 color black = color(100);
 color fingFil = 0;
 color transpGray = color(125,125);
 PFont font;
 int fricProfile = 1;
 float spacing;
 int beginKnobX = 400;
 int showNums;

 SlideX(int value, int iStartLevel, int inumRects, int ibeginKnobX, int ienterRadX, int ienterRadY, String iLabel, int ishowNums){
 controlit = new EffectControls("-"+ value + "-" + iLabel, value);
 controlit.A.setPara("tpad", 0, 255, 255);
 controlit.B.setPara("-none-", 0, 5000, 10000);
 controlit.C.setPara("-none-", 0, 5000, 10000);
 controlit.D.setPara("-none-", 0, 5000, 10000);
 controlit.E.setPara("tpad_on", 0, 1, 1); //tpad switch
 controlit.F.setPara("fricProfile", 0, fricProfile, 0);
 }
}
controlit.G.setPara("-none-", 0, 0, 0);
controlit.H.setPara("-none-", 0, 0, 0);

StartLevel = iStartLevel; CurrentLevel = StartLevel; LastLevel = CurrentLevel; numRects = inumRects;
beginKnobX = ibeginKnobX; enterRadX = ienterRadX; enterRadY = ienterRadY; showNums = ishowNums;
knob = new Cursor(beginKnobX,300, 175,625,300,300);
beginCirc = new RectArea(knob.xPix, knob.yPix, enterRadX,enterRadY, gray);
exitCirc = new RectArea(knob.xPix, knob.yPix, enterRadX*2,enterRadY*2, LTgray);
//beginCirc = new CircleArea(knob.xPix, knob.yPix, enterRad, gray);
//exitCirc = new CircleArea(knob.xPix, knob.yPix, exitRad, LTgray);
RectArr = new RectArea[numRects];
LineArr = new RectArea[numRects];
NumArr = new ComboNum[numRects];
spacing = 500/numRects;
float rwidth = spacing-8;
font = loadFont("ArialMT-36.vlw");

for (int i = 0; i<numRects; i++){
 RectArr[i] = new RectArea(150+(i+.5)*spacing+4, 300, rwidth,100, TPaDWindowColor);
 LineArr[i] = new RectArea(150+(i+.5)*spacing+4, 300, 3, 34, black);
 NumArr[i] = new ComboNum(int(150+(i+.5)*spacing+4), int(260-enterRadY/2), 0, ","+(i+1), font, 36);
}
}

void drawit(){

 for (int i = 0; i<numRects; i++){
 RectArr[i].drawit();
 LineArr[i].drawit();
 if (showNums == 1){
 NumArr[i].display();
 }
 }
}

fill(black);
rectMode(CENTER);
rect(100+300,300,450,8); //slider bar
rectMode(CORNER);
enterCirc.drawit();
enterCirc.drawborder();
fill(0);
```java
fill(fingFil);
ellipse(Fing.xPix, Fing.yPix, 20, 20);
}

void update(){
    fricProfile = parF;
    if(enterCirc.isWithin(Fing.xPix, Fing.yPix) ||
        exitCirc.isWithin(Fing.xPix, Fing.yPix) && acquired)){
        tpadOut = 0;
    }else{
        exitCirc.fillco = LTgray;
        enterCirc.fillco = gray;
        tpadOut = 255;
        acquired = false;
    }

    if(enterCirc.isWithin(Fing.xPix, Fing.yPix)){
        acquired = true;
        enterCirc.fillco = transpGray;
    }

    knob.enforceBounds();
    if(acquired){
        fingFil = color(255,0);
        if(fricProfile == 1){
            tpadOut = 255;
            for ( int i = 0; i<numRects; i++){
                if(RectArr[i].isWithin(knob.xPix, knob.yPix)){
                    tpadOut = 0;
                    CurrentLevel = i+1;
                    if(CurrentLevel != LastLevel){tpadOut = 254;}
                }
            }
        }else if(fricProfile == 2){
            tpadOut = 0;
            for ( int i = 0; i<numRects; i++){
                if(RectArr[i].isWithin(knob.xPix, knob.yPix)){
                    tpadOut = 255;
                    CurrentLevel = i+1;
                    if(CurrentLevel != LastLevel){tpadOut = 1;}
                }
            }
        }
    }else{        fingFil = color(0,255);)

    if(!Fing.touch){
        for(int i =0; i<numRects; i++){
            if(RectArr[i].x - spacing/2 <= knob.xPix && knob.xPix <
               RectArr[i].x +spacing/2){
                knob.xPix = int(knob.xPix + .55 * (RectArr[i].x -
                                                           knob.xPix));
            }
        }
    }
```
exitCirc.update(knob.xPix, knob.yPix);
enterCirc.update(knob.xPix, knob.yPix);

if (tpadOut != tpadOutLast) {
 sendTpad();
 sendBang();
}
 tpadOutLast = tpadOut;
 LastLevel = CurrentLevel;
}

void sendTpad(){
 controlit.setit('A',tpadOut);
 //controlit.A.val = tpadOut;
 //controlit.update();
}

void receive(){
}

void reset(){ //reset returns everything to initial conditions.
 CurrentLevel = StartLevel;
 knob.reset(beginKnobX,300, 175,625,300,300);
 controlit.update();
}

class CircleArea{
 float x; float y; float r; color fillco;
 CircleArea(float xi,float yi,float ri, color fillcoi){
 x = xi; y = yi; r = ri; fillco = fillcoi;
 }
 void update(float xin, float yin){
 x = xin;
 y = yin;
 }
 void drawit(){
 fill(fillco);
 ellipseMode(CENTER);
 ellipse(x,y,r*2,r*2);
 ellipseMode(CORNER);
 }
 void drawborder(){
 strokeWeight(2);
 stroke(0);
 ellipseMode(CENTER);
 noFill();
 ellipse(x,y,r*2,r*2);
 ellipseMode(CORNER);
 noStroke();
 }
 boolean isWithin(float xin, float yin){
 if((xin-x)*(xin-x) + (yin-y)*(yin-y) <= r*r){
 return true;
 }else{
 return false;
 }
 }
}
class RectArea{
 float x; float y; float w; float h; color fillco;
 RectArea(float xi, float yi, float wi, float hi, color fillcoi) {
 x = xi; y = yi; w = wi; h = hi; fillco = fillcoi;
 }
 void update(float xin, float yin) {
 x = xin;
 y = yin;
 }
 void updateColor(color fillin) {
 fillco = fillin;
 }
 void drawit() {
 fill(fillco);
 rectMode(CENTER);
 rect(x, y, w, h);
 rectMode(CORNER);
 }
 void drawborder() {
 strokeWeight(2);
 stroke(0);
 rectMode(CENTER);
 noFill();
 rect(x, y, w, h);
 rectMode(CORNER);
 noStroke();
 }
 boolean isWithin(float xin, float yin) {
 if (x-w/2 < xin && xin < x+w/2 && y-h/2 < yin && yin < y+h/2) {
 return true;
 } else {
 return false;
 }
 }
}

SlideX3 slideX3;

class SlideX3 {
 float enterRadX = 30;
 float enterRadY = 30;
 RectArea enterCirc;
 RectArea exitCirc;
 //int tpadOut = 0;
 //int tpadOutLast = 0;
 boolean acquired = false;
 Cursor knob;
 EffectControls controlit;
 RectArea[] RectArr;
 RectArea[] LineArr;
ComboNum[] NumArr;
int numRects = 9;
int StartLevel = 1;
int CurrentLevel = 1;
int LastLevel = 1;
boolean FingerActive = false;
color LTgray = color(150,50);
color gray = color(200);
color black = color(100);
color fingFil = 0;
color transpGray = color(125,125);
PFont font;
int fricProfile = 1;
float spacing;
int beginKnobX = 400;
int showNums;

SlideX3(int value, int iStartLevel, int inumRects, int ibeginKnobX, int ienterRadX, int ienterRadY, String iLabel, int ishowNums)
{
 StartLevel = iStartLevel; CurrentLevel = StartLevel; LastLevel = CurrentLevel; numRects = inumRects;
 beginKnobX = ibeginKnobX; enterRadX = ienterRadX; enterRadY = ienterRadY; showNums = ishowNums;

 controlit = new EffectControls("-"+ value + "- " + iLabel, value);
 controlit.A.setPara("knob start", 0, int(map(beginKnobX,100, 700, 0, 10000)), 10000); //knob.reset(beginKnobX,300, 175,625,300,300);
 controlit.B.setPara("knob width", 0, int(map(enterRadX,0, 600, 0, 10000)), 10000);
 controlit.C.setPara("-none-", 0, 5000, 10000);
 controlit.D.setPara("-none-", 0, 5000, 10000);
 controlit.E.setPara("tpad_on", 0, 1, 1); //tpad switch
 controlit.F.setPara("fricProfile", 0, fricProfile, 0);
 controlit.G.setPara("numRects", 0, numRects, 0);
 controlit.H.setPara("-none-", 0, 0, 0);

 knob = new Cursor(beginKnobX,300, 192,607,300,300);
 enterCirc = new RectArea(knob.xPix, knob.yPix, enterRadX,enterRadY, gray);
 exitCirc = new RectArea(knob.xPix, knob.yPix, enterRadX*2,enterRadY*2, LTgray);
 //enterCirc = new CircleArea(knob.xPix, knob.yPix, enterRad, gray);
 //exitCirc = new CircleArea(knob.xPix, knob.yPix, exitRad, LTgray);

 RectArr = new RectArea[numRects];
 LineArr = new RectArea[numRects];
 NumArr = new ComboNum[numRects];
 spacing = 500/numRects;
 float rwidth = spacing-8;
 font = loadFont("ArialMT-36.vlw");
for (int i = 0; i<numRects; i++){
 RectArr[i] = new RectArea(150+(i+.5)*spacing, 300, rwidth, 100, TPaDWindowColor);
 LineArr[i] = new RectArea(150+(i+.5)*spacing, 300, 3, 34, black);
 NumArr[i] = new ComboNum(int(150+(i+.5)*spacing), int(260-enterRadY/2), 0, ""+ (i+1), font, 36);
}

void drawit(){
 // rectMode(CENTER);
 // fill(gray);
 // rect(400, 300, 450,50); //box for detente markers
 // rectMode(CORNER);
 for (int i = 0; i<numRects; i++){
 RectArr[i].drawit();
 LineArr[i].drawit();
 if (showNums == 1){
 NumArr[i].display();
 }
 }
 fill(black);
 rectMode(CENTER);
 rect(100+300,300,450,8); //slider bar
 rectMode(CORNER);
 //exitCirc.drawit();
 enterCirc.drawit();
 enterCirc.drawborder();
 fill(0);
 fill(fingFil);
 ellipse(Fing.xPix, Fing.yPix,20,20);
 //Fing.display(20,0);
 //knob.display(20,color(0,255,0));
}

void update(){
 fricProfile = parF;
 if((enterCirc.isWithin(Fing.xPix, Fing.yPix) ||
 (exitCirc.isWithin(Fing.xPix, Fing.yPix) && acquired)){
 //exitCirc.fillco = transpGray;
 //enterCirc.fillco = transpGray;
 //tpadOut = 0;
 }else{
 exitCirc.fillco = LTgray;
 }
}

enterCirc.fillco = gray;
//tpadOut = 255;
//acquired = false;
}

if(enterCirc.isWithin(Fing.xPix, Fing.yPix)){
 //acquired = true;
 enterCirc.fillco = transpGray;
}

knob.enforceBounds();
if(acquired){
 fingFil = color(255,0);
}
else{ fingFil = color(0,255);}

exitCirc.update(knob.xPix, knob.yPix);
enterCirc.update(knob.xPix, knob.yPix);

LastLevel = CurrentLevel;
}
void receive(){
}

void reset(){ //reset returns everything to initial conditions.
 CurrentLevel = StartLevel;
 controlit.update();
}