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Dynamical System Segmentation for Information
Measures in Motion

Thomas A. Berrueta, Ana Pervan, Kathleen Fitzsimons, and Todd D. Murphey

AbstractMotions carry information about the underlying motions may be comprised of symbolic sequences drawn from
task being executed. Previous work in human motion analysis an alphabet of movemes. Movemes motivate the application of
suggests that complex motions may result from the Composition qrmation measures in human motion analysis, because they
of fundamental submovements called movemes. The existence . . - . . :
of nite structure in motion motivates information-theoretic proylde _ewdence of nite Structqre in otherwise CO”_“”L%OUS
approaches to motion ana|ysis and robotic assistance. We de ne motion S|gna|s. Moreover, the existence of movemes indicates
task embodiment as the amount of task information encoded that under some choice of representation human motion can
in an agent's motions. By decoding task-specic information pe discretized without loss of information.

embedded in motion, we can use task embodiment to create | the hyman motion analysis literature, movemes are often
detailed performance assessments. We extract an alphabet of

behaviors comprising a motion withouta priori knowledge using characterized using causal dynamical systems [3], [4], or
a novel algorithm, which we call dynamical system segmentation. hybrid system identi cation methods, such as autoregressive
For a given task, we specify an optimal agent, and compute models [5]. Most motor signal segmentation methods demand
an alphabet of behaviors representative of the task. We identify prior speci cation of the moveme alphabet either through

these behaviors in data from agent executions, and compare their giract template matching or manual labeling of training data
relative frequencies against that of the optimal agent using the ’

Kullback-Leibler divergence. We validate this approach using a which limits their use in exploratory analys_es_ where t_he struc-
dataset of human subjects (= 53) performing a dynamic task, ture of the alphabet may not be knowanpriori. Techniques
and under this measure nd that individuals receiving assistance in symbolic dynamic lItering can generate symbolic alphabets
better embody the task. Moreover, we nd that task embodiment by creating partitions of the state-space using methods such
is a better predictor of assistance than integrated mean-squared- as maximum entropy partitioning [6]. Additionally, state-space
error. partition techniques can be applied to nonlinear transforma-
Index Terms Rehabilitation Robotics, Movement Primitives,  tjons of the space via methods such as wavelet transforms [7].
System Identi cation, Behavior-Based Systems. However, the symbols synthesized by these spatial techniques
are quasi-static, and are not designed to describe the dynamic
I. INTRODUCTION nature of movemes.
) ] ] Automatic segmentation methods based on Hidden Markov
I\/I OTION signals encode information about the undefyogels (HMMs) describe complex motion as the stochastic
. lying task being executed, yet the form this informag,oiution of discrete hidden states. Pure HMM-based ap-
tion takes may vary. Typically, we represent motion Usingroaches have been used to directly classify movemes from
continuous real-valued signals. While this representation C&8quential observations. States in the HMM learn an obser-
provide detailed descriptions of an agent's motions, it can Bgtion distribution that describes each moveme. Movement
cumbersome. However, based on our choice of representatmnitive HMMs (MP-HMMs) model the temporal phases of
we can compress motion signals while preserving informatigf, ingividual primitive and have been used to assess movement
about the task [1]. _ performance and generate detailed models of motion [8].
In[2], the authors propose that human motions are the resgl|hce the model’s hidden states are represented by observation
of the composition of a nite set of premotor signals emanati”@istributions, typical HMMs and MP-HMMs as well as their
from the spinal cord. As a consequence, the neurological f§gnher-order and hierarchical variants all use static symbols,
sibility of motion decomposition forms the basis for action igyhich limits their use in characterizing movemes.
movement primitives, also known asoveme43]. Movemes  ajternatively, Switched Linear Dynamical Systems (SLDS)
are fundamental units of motion, and derive their name frogyition nonlinear systems into a set of piecewise-continuous
their linguistic analogue: phonemes. Thus, all smooth humgRear dynamical systems, whose transitions are modeled by

. . . the stochastic dynamics of a hidden switching variable de-
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template. This is particularly an issue for analyses of atypigaartitions of complex, continuous movements that are not
or impaired motion where asymmetries arise, and signals mayenable to supervised or template-based approaches even
not match a given template with standard features. Thuwshen the movements are atypical and asymmetrical. Consider
supervised learning approaches are generally not as effectivenan walking as an example. Gait phase partitioning is
when the structure of the symbolic alphabet is not knowan canonical problem in the motor segmentation literature
ahead of time. [18], [19]. Supervised segmentation methods work well for

In order to address cases with an unknown number amhalyzing healthy gaits due to an abundance of data and
symbols in the alphabet, the authors of [11] introduced a relinically veri ed motion templates. Since most impairments
cursive identi cation framework using switched autoregressivare unique there are no equivalent databases for atypical gaits,
systems without presupposing the number of models requirdémanding unsupervised techniques to model gaits such as
while work by [12] established a similar algorithm based othose proposed in this work. Detailed models of atypical
Bayesian inference over SLDS model parameters given sometion can facilitate the development of sophisticated robotic
prior belief. Additionally, unsupervised learning techniqueassistance, including methods for exoskeleton-assisted gait.
have been employed for decades in the elds of image prédditionally, performance assessments of gaits typically use
cessing and computer vision to nd and label key features hreuristic-based approaches. Typical notions of error are ill-
dense sources of data such as video [13] [15]. Within humasuited to comparing gaits since they depend on analyzing joint
motion analysis, motion capture setups are a common meamgectories which do not easily generalize from one individ-
of data acquisition. In this setting, unsupervised segmentatiars to another. However, gait cycles could be systematically
of human motion capture data based on cascading lineampared by using measures of task embodiment.
dynamical systems may correspond to the identi cation of The primary contributions of this paper are the following.
movemes from video sequences [16]. However, by modelifdrst, we develop a methodology for data-driven partitioning
the switches between movemes with exclusively temporafl dynamical systems. These partitions are projections onto
dependencies (i.e. with Markovian dynamics), any state-spahe state-space that can be used to extract an alphabet of
dependence on the switching conditions between movemesystem behaviors, and can be represented by a graph. Sec-
unmodeled, failing to provide transition guard conditions. ond, we demonstrate that by tracking relative frequencies

Our approach synthesizes nite sets of dynamic symbaié behaviors we can discern relationships in human motion,
from agents’ motions without any prior system knowledgsych as whether an individual is receiving task assistance.
while modeling state-space dependencies between symbdis.apply our information-theoretic approach to a dataset of
Motivated by movemes and movement primitives, we de neuman subjectgn = 53) performing a dynamic task where
behaviorsas moveme analogues for general systems, and spagsistance is sometimes provided, and extract an alphabet of
ify them using nite-dimensional nonlinear causal dynamicabptimal behaviors based on a synthesized exemplar agent.
systems. Making a choice of representation for behaviorsBy tracking the relative frequencies of nite behaviors in
very important. While there exist many data-driven functiohuman subjects and comparing to those of the optimal agent,
approximation methods, we choose the Koopman operatorwe are able to quantify the degree of task embodiment, and
represent behaviors because they are capable of captudetermine whether a subject received assistance. We validate
nonlinearities within a linear systems framework [17]. Byhe performance of task embodiment by using integrated
identifying features from motion signals and constructinmean-squared-error (MSE) as a baseline, and nd that task
an alphabet of behaviors, we directly encode task-speciembodiment is a good predictor of assistance.
information into the symbolic representation.

Information is an ordered sequence of symbols drawn Il. METHODS
from an alphabet generated by a source [1]. We de ne taskap agents state trajectories simultaneously encode infor-
information with respect to a source, such that the sourggytion about the system dynamics and the task it executes.
generates sequences of symbols comprising realizations of fie examining system trajectories, one can uncover patterns
task. Any physical system or agent attempting a given tagk now it traverses the underlying state-space manifold. We
is a task-specic mformatpn source. Thrpughogt this Stuc_j)bropose Dynamical System Segmentation (DSS): a nonpara-
we represent task information using the distribution of relatifetric, unsupervised, data-driven algorithm for creating low-
frequencies of symbols within a given set of realizations of thtﬁmensional, graphical representations of system behaviors by

underlying system. Additionally, we de neask embodiment enerating partitions of the state-space manifold sensitive to
as a measure of task information encoded in an agerﬁﬁ underlying distribution of task information.

trajectories by calculating their relative entropy with respect
to a reference symbol distribution. A. Koopman Operators
The task embodiment formalism is important because it'is
agnostic to speci cation of the system, task, or symbolic repre- We use Koopman operators as our choice of representation
sentation, which allows us to analyze motion signals generafgr System behaviors because they are capable of representing
Task embodiment provides a framework for making motdtonlinear systems within a compact, linear form amenable to
performance assessments in tasks where measures suchogyol hierarchies. Consider dynamical systems described by
error are unsuitable. Additionally, the proposed unsupervised Z e+

segmentation technique is capable of generating symbolic X1 = F(X) = X+ y fOx(t))dt; @)
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wherex2 M is ann-dimensional state evolving on a smootlsingle realization of a dynamical system of the same form
manifold according to the ow maf- : M ! M , which can as in Eqg. 1, and a set of basis functions described by the
be related to an analogous continuous-time systéxnby the vector-valued functiory (x) sty : M ! RN, we can apply
discretization shown above. the basis functions onto the datadetin order to generate a

operator capable of describing the evolution of any measuthe transformed datasttyx into a set ofW+ 1 overlapping
preserving dynamical system, through its action on systewctangular windows, and calculate a Koopman operator for
observables [17]. The operator describes the evolution @dich, thereby generating a set of symhdls fK o;:::; Kwg.
observablegg: M | R, which are elements of an in nite- However, depending on the system under study, the size of the
dimensional Hilbert space. Although typically observables adataset, and choice of window size and overlap percentage,
taken from the space of Lebesgue square-integrable functiosmmne of these symbols may be redundant.

otherLP measure spaces are valid as well [20]. The action of We are interested in creating a minimal alphabet of Koop-
the in nite-dimensional Koopman operatdf,, on an observ- man operators with which to span all system behaviors. Unsu-

ableg is given by pervised learning methods such as clustering algorithms that
_ B _ specialize in the identi cation of classes within datasets are
904+ 1) = 9(F(xJ) = Kg(x): () well-suited for this task. By considering eaBY N Koopman

Despite their in nite-dimensionality, Koopman operator§Perator as a point iRV’ space, we can divide the skt
can be approximated in nite dimensionS, and used to délto subsets USing a ClUStering algorithm. In partiCUlar, we use
scribe nonlinear dynamical systems as a result of the daierarchical Density-Based Spatial Clustering of Applications
velopment of methods such as those in [21], [22]. Givefiith Noise (HDBSCAN), which is a nonparametric clustering
a datasetX = [xo;:::;xm] consisting of a single time-seriesalgorithm that performs well in large databases subject to noise
of observations from a realization of a dynamical systerf?4]. The algorithm groups the operators iror 1 classes
one must rst choose a set of basis functions with whichCo;::;;Cgg using only the minimum of number of points
to span some subspace of the underlying function spaf@quired to make up a cluster as a parameter. We compose a
fz1(X);nzn(X)g; st:z M | R; 8i 211 Ng, where we SetK = fKo;::;;Kgg of class exemplars by taking a weighted-
can deney (X) =[z(xX);:zn(®)]™; sty :M | RN as a average of alK; 2 Cj; 8j 2f 0;::;;Bg, according to the class-

vector-valued function encompassing the action of all badiRembership probability(KijK;i 2 C;). The class-membership
functions on a given system state. probability function is provided by the HDBSCAN software

We want to develop a mapping between current states a#@fkage [25].

their evolution from the time-series of observations By ~ Although we have created a minimal alphalebf system
de ning a transformed datasé{x = [y (Xo)v Yy (XM l)]Tv behaViorS, it is of interest to prOjeCt these behaviors onto the

and its evolutionY yo=[y (x1):::;y (xm)]T, we can describe State-space manifold from this abstract operator space. We
such a mapping a¥ yo= Y xK + r(X), whereK is a nite- label all points in the transformed dataséx with a label
dimensional approximation of the in nite operatdt, and | 2 f0;::; Bg according to the class label of the Koopman
r(X) is a residual error due to the approximation. We ca@perator each point was used to generate. Then, we train a
minimize the residuat(X) over the squared-error loss func-SUpport vector machine (SVM) classi eF(y (X)) to project

tional the class labels onto the state-space manifold, thereby gener-
_oAM 1 s ating partitions of the state-space [26].
min 5y (1) Ky (6015 () Figures 1(a) & 1(b) depict a cart-pendulum system used
k=1 for an example application of DSS, where we segment an
with closed-form solution optimal control solution to the pendulum inversion task. Often
K=G A: ) the partitions generated by dynamical system segmentation

may be intuitively related to the examined task. In Fig. 1(a),
where denotes the Moore-Penrose pseudoinverse and one can see that modes 0 and 1 represent trajectories with

e 1M1 negative and positive velocities respectively, while mode 2
G= v y (%)Y (xk)T; A= — y (%)Y (xk+1)T: (5) represents Iowgr velpcity motion aqd stabilization. Since the
k=0 k=0 state-space trajectories used to train the model encode task-

We obtain a matrisk 2 RN N that is an estimate of the systemSpeCi ¢ information, the behavioral modes do as well. Once a
dynamics over the observed domain of the data [23] namical system has been segmented, the SVM’s partitions of

will use Koopman operators to describe individual behavioFQe sta.te-space are set, .a_nd new data.pomts.wnl be classi ed
expressed in data. according to which partition they fall into. Figure 2 shows

a cross-section of the partitioned state-space manifold of the
optimal controller solution to the cart-pendulum inversion
B. Dynamical System Segmentation shown in Fig. 1(a).
DSS characterizes all system behaviors over the state-space
by synthesizing a non-redundant set of local estimates &f Graphical Representation
the true system dynamics using a collection of Koopman The product of DSS is best represented by a graph. We
operators. Given a dataset = [xo;:::;xv] consisting of a can dene a graphG = (K; E) where the node seK
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(a) Segmentation ofj(t) and q(t) trajectories of an optimal control solution (b) Segmentation of thy;q) phase portrait of an optimal control solution
to the cart-pendulum inversion problem with a sample system shown belowto the cart-pendulum inversion problem.

Fig. 1. Example of dynamical system segmentation applied to an optimal model predictive control solution to the cart-pendulum inversion problem, speci ed
by the goal state ofq;xc;q;xc) = ( 0;0;0;0). Despite the fact that the segmentation is not knawpriori it still corresponds to intuitive behaviors. The
identi ed behaviors encode negative velocities, positive velocities, and low velocity motion in modes 0, 1 and 2 respectively.

contains the exemplar Koopman operators synthesized frembedded in an agent’s motions, which we refer to as task
the clustering procedure. The set of edges determined by embodiment.

directly observing the sequences of class labels in the dataset,

and tracking all unigue transitions. Figure 3 illustrates how [1l. EXPERIMENTS

DSS relates to the resulting graph. Each node in the graphrpe proposed assessment of task embodiment was applied
represents a distinct dynamical system over its respecty gata collected from human subjects performing a cart-
partition of the state-space manifold. By traversing the grapfanqujum inversion taskData was collected using the NACT-

symbolically from one node to another, traversal of the stagg an admittance-controlled haptic robot, similar to that de-
manifold is implied. The DSS algorithm is summarized in

Algorithm 1. While initialization of a DSS model requires The authors utilized de-identi ed data from a study approved by the
that the dataseX be from a single realization of a systemNorthwestem Institutional Review Board.
additional realizations can be used to account for variability

in system roll-outs. Algorithm 1 Dynamical System Segmentation (DSS)

The graph itself encodes task-speci ¢ information embegh, it DataseiX = [xo; :;; x] from a single realization of a dynam-
ded in the state trajectories of the training dataset. In particular, ical system, basis functiorfy (x)jy : M ! RNg, window size
the graph’s state distribution is an information-rich object that Sy, overlap percentagg,y, minimum number of points required
can be used for data analysis purposes. Given an optimal to form a clusteMc

, : rocedure:
agent’s graphGept constructed with DSS, we can use tth Transform theX dataset intoY x = [y (xo): =21y (a)]T

trained SVM classi erF op(y (X)) to identify behaviors from . Split Y into W+ 1 windows of sizeSy overiapping byPoy

the optimal agent in data from other agents. By tracking the: Calculate a Koopman operaté§ for each window to construct
relative frequencies of behavioks from the optimal agent the setK = fK ;1 Kwg

in another agent’s trajectories, we can calculate a distributiofi Construct a feature arrag sy by attening all K; 2 RN Nin K
a(K), and directly compare it tGop’s optimal state distribu- ~ into points inRN" and appending them

tion p(K) using the Kullback-Leibler divergence (D) [27] > g:“;ie;”dﬁgncingigégéggfj_,'\_'g' ;nd label alK;'s from one
;05 Ca

6: Construct a seK = fKg;:::;Kgg of class exemplars by taking a

o B q(Ki) weighted-average of aK; 2 Cj; 8j 2f0;:::; Bg, according to the
DrL(p(K)jja(K)) = p(Ki)log 7y (6) membership probability(KijK; 2 C;)
i=0 p(Ki) 7: Label all points inYyx with the labell 2 f 0;:::;;Bg of the

o ) ) _ Koopman operator they were used to generate
The state distributions encode coarse-grained informatiogl Train an SVMF(y (x)) on the labeled points

about the task, and their comparison can be used for pes: Construct a set of unique transitioBsby tracking all sequential
formance assessment. Since an optimal agent’s distribu- 'é‘bebt '“tthe dataléet(K 5

P ; P : Construct a graplé = (K;

tion is ih_e:\ most representative state dlstr|but|or_1 of a t_as&tum: Graphical models, and trained SVMF(y (X))
DkL(p(K)jiq(K)) represents the amount of task information
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Fig. 2. State-space partitions generated by an SVM trained on an optirfaj. 3. Output of the Dynamical System Segmentation algorithm:each
controller’s cart-pendulum inversion. DSS identi ed 3 modes, and the SVMode in the graph is a distinct dynamical system that governs its partition of
partitions are shown at thi; xc) = ( 1; 1) cross-section of the manifold. the state-space manifold generated by the SF (x)).

scribed in [28] and [29]. We synthesize a dataset representat@utions to the pendulum inversion problem using Sequential
of an optimal user using an optimal controller. Data from th&ction Control [33], a receding-horizon model predictive
expert is segmented by applying the DSS algorithm proposeptimal controller for nonlinear and nonsmooth systems, over
in Section Il in order to generate a graphical moGgl, and a randomized set of initial conditions. The controller's objec-
a set of optimal behaviors to trackep's state distribution tive was(q;xc;d;xc) = ( 0;1;0;0), with linear quadratic cost
is then used as a reference to compare against the hurparameters ofQ = diag([200;80;0:01;0:2]). Thirty optimal
subjects, and assess their task embodiment. control trials of thirty seconds each were generated so as to
mirror the amount of data collected from human subjects.

A. Human Subjects Dataset )
C. Optimal Graph

A lter-based assistance algorithm proposed in [30] for pure ) . .
noise inputs, and adapted for user input in [31] and [32] We apply the DSS algorithm to the synthesized trials to

was applied to a virtual cart-pendulum inversion task on tfenerate an optimal graphical model. The choice of basis func-
NACT-3D. The assistance physically lters the user's inputs tions has the greatest effect on the algorithm’s performance

accelerations in this case such that their actions are alwayecause of how they reshape the state-space boundaries. The

in the direction of an optimal control policy calculated in reafet ©f Pasis functions (x), selected for this task were

time. All subjects were instructed to attempt to invert a virtual y (X)
cart-pendulum with the goal of spending as much time as
possible in the unstable equilibrium during a thirty second jUsajcos’
trial, where the cart-pendulum states were sampled at 60Hz.

Subjects repeated this task for 30 trials in each of two sessiof¥§€rejusad is the optimal controller's saturation limit on the
Forty subjects completed this task with assistance in ofR@antrol effort. The basis functions were selected from the set of
session and without assistance in the other session. The order

in which the subjects received assistance was counterbalanced

to account for learning effects. An additional thirteen subjects

were placed in a control group which completed both sessions

without assistance. Figure 4 depicts the effect of assistance on

the state trajectories of a representative subject, and includes

an optimal trajectory for comparison. For the assisted trial,

the subject reaches the goal stateqof 0 and is able to

balance the pendulum starting around 5s. At this point,

the assistance restricts the user’s input mosig() such that

the inversion is maintained until= 13s. However, the same

subject is unable to maintain the inverted con guration without

assistance.

=[0d; X 9; X U; u cos@); u cos@);
up . 2. 4
R Y

jUsa

B. Training Dataset

To assess task embodiment using our dynamical system

segmentation technique, we synthesized an optimal basekfg 4. sample trajectories from subject 16's trials depicting the effect of
to compare subjects against. We generated optimal contedistance in time-domain, as well as a trial from an optimal controller.
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(a) Time-domain segmentation of a selected optimal control solution of tifie) GraphGep; resulting from the segmentation of a dataset of 30 optimal
pendulum inversion task. Mode 0 corresponds to energy pumping and swiegntrol solutions to the cart-pendulum inversion task. The set of segmented
up, mode 1 corresponds to energy removal and slow-down, and modeehaviors are shown projected onto the system’s phase portrait over the
correponds to stabilization. domainf(q;q):( p;p) ( 2p;2p)g.

Fig. 5. Data-driven identi cation of exemplar behaviors through the use of dynamical system segmentation and the resulting graphical model from the
segmentation of the pendulum inversion task.

linear combinations of second order polynomial and sinusoid&ll subjects better embodied the task in their assisted trials,
functions. Since clustering occurs RN? space, wherd\ is whereas there was no observed difference in the control group.
the number of basis functions, we chose a low-dimensional $etaddition to comparing the groups using task embodiment,
(N = 10) of representative basis functions in Eg. 7 from thee also evaluated a standard metric for assessing task per-
larger set of linear combinations of polynomial and sinusoidédrmance, the integrated MSE. Speci cally, we calculated the
functions. This dimensionality reduction can be achieved viategrated MSE with respect to a goal statg@fq) = ( 0;0).
multiple methods, such as principal component analysis [2Titegrated MSE is a reasonable performance metric for this
Figure 5(a) depicts the behaviors identi ed from the exenmask since success is de ned as the ability to reach a single
plar trial. The identi ed modes 0, 1 and 2 correspond to energystem con guration. However, we nd that it predicts assis-
pumping and swing-up, energy removal and slow-down, at@hce at a lower signi cance level, and lower effect size than
stabilization, respectively. These modes represent a settagk embodiment.
behaviors that an expert user should exhibit in succeeding ajp paired two-sample t-test on the task embodiment of
the task. each subject with and without assistance showed that the
We synthesize the optimal grapBop: using the identi- gypjects’ sessions with assistar{ce= 0:0756; s = 0:0436)
ed behaviors, and then use the graph's state distributiogigni cantly outperformed the sessions without assistance
p(K) = [ 0:2437; 0:1275; 0:6288] as the reference baselinem= 0:2084; s = 0:0560), with p = 2.8633e-16;t(39) =
with which to assess the subjects’ task embodiment. The graph4g76, and an effect size af= 2:1326. In contrast, there
Gopt and the segmented behaviors projected onto(t€) was no signi cant difference between the rst sessign=
phase portrait by the trained SVMop(y (x)) is shown in 0:2039;s = 0:0406)and the second sessiom= 0:1943;s =
Fig. 5(b). 0:0400) of the control group when a paired two-sample t-test
The human data is analyzed by using the trained SVi{as performedp = 0:5546; t(12) = 0:6051. These results

Fopt(y (X)) to detect the identi ed behaviors in each subject’fdicate that task embodiment reliably captures assistance and
trials with and without the presence of assistance. By trackifgtk thereof.

the relative frequencies of behavioks we can generate a We also performed a paired two-sample t-test on the MSE

distribution q(K) with which to compare toGep's state ) . . .
distribution p(K). We compare the distributions using tasl?f each subject with and without assistance, and found that the

. . TR A session with assistan€ém= 12466; s = 11996) signi cantly
embodiment quanti ed byDk (p(K)jjq(K)), where a lower : . . o
Dk indicates greater embodiment of the task. This sa étperformed the session without assistaftoe 42888; s =

0

rocedure is applied to the two sets of data from the contr] 746), but with a lower signi cance and efiect size than
Sroup Subjectspp Ask embodiment, withp = 1.2353e-7;t(39) = 6:4526 and

an effect size ofd = 1:0202. Again, we applied the paired
two-sample t-test to the control group and found that the
IV. RESULTS rst session(m= 35283; s = 21767) did not signi cantly
We analyzed the human subjects dataset, and found tbatperform the seconm= 54631; s = 44610), had p =
task embodiment is a reliable predictor of physical assistan€0651; t(12) = 2:0320. These results indicate that MSE can

2377-3766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2018.2884091, IEEE Robotics
and Automation Letters

BERRUETA et al.: DYNAMICAL SYSTEM SEGMENTATION FOR INFORMATION MEASURES IN MOTION 7

Fig. 6. Summary of experimental results: subjects in the experimental group who received assistance (blue) were compared to their own unassisted trials.
The control group subjects (red) were compared from their initial session to their nal session. The pair of plots to the left show the difference in task
embodiment between the sessions of the experimental and control groups. The plots to the right show the difference between the same groups using the
integrated MSE instead. Both task embodiment and MSE are good predictors of assistance, validating task embodiment as a performance measure.

also predict the presence of assistance, but not as reliably V. CONCLUSIONS
as task embodiment. The task embodiment measure has botfy this study, we proposed an information-theoretic ap-

a signi cance level several orders of magnitude greater th@foach to human motion analysis. The DSS algorithm for-
that of integrated MSE, and showed an effect size that Wagyjated in Section Il produces graphical models that encode
twice as Iar_ge as integrated MSE. This demonstrates t'?&%k-specic information. By tracking the degree of task
task embodiment captures the large difference between ¥yghodiment, we are able to decode complex relationships in
assisted and unassisted trials. These results are summarggtan motion. We applied DSS to a dataset of human subjects
in Fig. 6, where we see that the change in task embodimeforming a virtual cart-pendulum inversion task with and
(DTE) from assisted to unassisted trials is always positiviithout assistance. We determined that task embodiment is
When we limit our alphabet to linear symbols using the samegood predictor of assistance, and validated the results by
DSS hyperparameters as those in the outlined resif>  comparing task embodiment to integrated MSE. Moreover,
was positive only in 5% of subjects. When we tune the DS§sk embodiment identi ed the presence of task assistance at
parameters to generate an alphabet of the same size as inglliigher signi cance level and with a larger effect size than
primary results,DTE was positive only in 30% of subjects.integrated MSE. Thus, the experimental results provide strong

Therefore, for this system, linear symbols do not captugpnort for the use of information measures in human motion
suf cient task information to reveal the presence of assistangga|ysis.
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(a) Resulting graph and state-space projections from the segmentation(l)f Resulting graph and state-space projections from the segmentation of

subject 16's assisted trials of the pendulum inversion task.

Fig. 7. Constructed graphical models from the segmentation of a representative experimental subject with and without assistance. The graph’s nodes project

onto the system'¢q;q) phase portrait over the domafaq;q) : ( p;p) ( 2p;2p)g of the state-space manifold according to the phase portraits shown

subject 16’s unassisted trials of the pendulum inversion task.

alongside the nodes. We note that the behaviors of the unassisted subject’s phase portraits are noise-driven and show no discernible structure.
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