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Abstract. Estimation of contact state is important to any multi-point interaction
that involves frictional stick/slip phenomena. In particular, when there are more
kinematic constraints than there are degrees of freedom, some contact interfaces
must slip, leading to the need for contact state estimation. Fortunately, supervi-
sory control techniques from adaptive control can be applied to this problem with
relatively little modification. We discuss this approach in terms of a distributed ma-
nipulation experiment developed to explore overconstrained manipulation. In this
context, we show in a simulated model that on-line contact state estimation dra-
matically improves performance over methods that estimate contact states off-line.

1 Introduction

A manipulation system consisting of many points of contact typically exhibits
stick/slip phenomenon due to the point contacts moving in kinematically in-
compatible manners. We call this manner of manipulation overconstrained
manipulation because not all of the constraints can be satisfied. Naturally, un-
certainty due to overconstraint can sometimes be mitigated by having back-
drivable actuators, soft contacts, and by other mechanical means, but these
approaches avoid the difficulties associated with stick/slip phenomenon at
the expense of losing information about the state of the mechanism. This, in
turn, leads either to degraded performance or to requiring additional sensors.
This paper is concerned with systems that have multiple points of contact, all
of which are frictional and adequately described by either constraint forces
(when there is no slipping at the point contact) or by the slipping reaction
force. Prototypes of this situation include distributed manipulation systems,
such as those found in [1,2], as discussed in Section 2.

An important question in these systems is that of contact state estimation
[3]. That is, for n kinematic constraints associated with contact interfaces,
estimating at any given time which constraints are satisfied (the contact is
“sticking”) and which are not (the contact is “slipping”). How can one de-
termine the stick/slip state for each point contact? Without a sensor at each
point contact, the output signal must be used in some way to determine this.
Moreover, the computational complexity of the solution must be considered
as well, since for an n contact system there are 2n possible stick/slip combi-
nations. The main contribution of this paper is to show that methods from
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adaptive control called supervisory control [4–6] provide a reasonable solu-
tion to this problem, although the computational complexity of the solution
indicates that better algorithms are needed for n large, such as in the case of
MEMS manipulation. There are some reasonably simple adaptations of this
technique to increase its efficiency. For instance, in [7] it was shown that many
contact systems of interest can be formally reduced to kinematic systems de-
spite stick/slip phenomena. In this case, the number of possible stick/slip
states reduces to n rather than 2n, making the adaptive control technique
used here more viable. However, these modifications are largely superficial,
and will need to be improved upon. Nevertheless, for n reasonable, the tech-
nique presented here works quite well in simulation, as discussed in Sections 3
and 4.

This paper is organized as follows. Section 2 discusses distributed manip-
ulation in more detail, and discusses the experimental implementation used
before in [1]. Section 3 describes the algorithm developed in [1] and gives an
example simulation for this experimental system when the contact states are
assumed to be known perfectly. We then illustrate how variations in the con-
tact state can, not surprisingly, degrade the performance of the algorithm.
Section 4 gives the necessary background for understanding a supervisory
control system, such as that described in [4,5]. We do not provide any of the
technical proofs ensuring that these methods can be applied to our systems
of interest, and refer the reader to [8]. Instead, we focus on what the main
result means for multi-point contact problems, both in terms of advantages
and shortcomings. We also discuss the implementation of this adaptive con-
trol method to the distributed manipulation example and show in simulation
that the original algorithm performance is indeed recovered even when the
contact states are not known a priori.

2 Motivation–Distributed Manipulation

Distributed manipulators usually consist of an array of similar or identical
actuators combined together with a control strategy to create net movement
of an object or objects. The goal of many distributed manipulation systems
is to allow precise positioning of planar objects from all possible starting con-
figurations. Such “smart conveyors” can be used for separating and precisely
positioning parts for the purpose of assembly. Distributed manipulator actu-
ation methods ranges from air jets, rotating wheels, and electrostatics on the
macro-scale, to MEMS and flexible cilia at the micro-scale.

Methods to design distributed manipulation control systems have been
proposed in several works, including [9–14]. However, in cases where only
a small number of actuators are in contact with the manipulated object or
the coefficient of friction µ is very high, continuous approximations of these
systems have been shown experimentally not to work well [1,2]. In these
cases, the physics of the actual array and the object/array interface must be
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incorporated into the control design process. In particular, the discontinuous
nature of the equations of motion must be addressed.

The work in [1] describes an experimental test-bed that was designed to
evaluate and validate such control systems. Our modular system can emulate
a reasonably large class of distributed manipulators that generate motion
through rolling and sliding frictional contact between the moving object and
actuator surfaces. In such cases friction forces and intermittent contact play
an important role in the overall system dynamics, leading to non-smooth
dynamical system behavior. The control question is twofold in its theo-
retical interest. First, unlike many other control problems currently being
studied, distributed manipulation problems are typified by being massively
overactuated. A planar distributed manipulation problem will typically only
have three outputs (x, y, θ), but it may potentially have thousands of inputs.
Therefore, control schemes must scale with the number of actuators in order
to be able to implement them on real devices such as MEMS arrays. Second,
there is the question of physical modeling. Partly because of the aforemen-
tioned overactuation, nonsmooth effects become commonplace in distributed
manipulation due to intermittent contact, friction, and kinematically incom-
patible constraints. When these are the dominant concerns, they must be
incorporated into the modeling and therefore into the control design as well.
Control laws appropriate to these systems have been successfully designed,
as discussed in Section 3.

Fig. 1. The Caltech Distributed Manipulation System. (a) Front View (b) Module

A photograph of the apparatus can be seen in Figure 1. The design is a
modular one based on a basic cell design. Each cell contains two actuators.
One actuator orients the wheel axis, while the other actuator drives the wheel
rotation (see Figure 1(b)). These cells can easily be repositioned within the
supporting structure to form different configurations. The system shown in
Figure 1(a) is configured with a total of nine cells—though more can be easily
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added. The position and orientation of the manipulated object is obtained
and tracked visually. To enable visual tracking, a right triangle is affixed to
the moving object. For more details on the experimental setup, please refer
to [1].

When experiments were performed using this device in [1], the contact
state was estimated in an open loop manner. That is, based on physical
principles (described momentarily), a static condition was chosen under which
the contact states would change. Somewhat surprisingly, this worked in the
implementation, but only because the device was in a controlled environment
and it was well characterized. In most cases this will not be the case, so we
necessarily must address the problem of contact state estimation. Even in
a nine cell system, this is a nontrivial task. Each wheel has two constraints
(a rolling constraint and a no-sideways-slip constraint) leading to a grand
total of 218 ∼ 105 possible contact states. Although not formally addressed
here, there exist techniques to reduce the number of possible states, including
kinematic reduction[7] and coordination[15].

3 Modeling and Analysis

To explicitly investigate, incorporate, and control the complex frictional con-
tact phenomena inherent in overconstrained manipulation, one needs to de-
velop general modeling schemes that can capture these phenomena without
being intractable from a control perspective. One could resort to a general La-
grangian modeling approach that accounts for the contact effects through La-
grange multipliers. Instead, we sought to develop a general modeling scheme
that captures the salient physical features, while also leading to equations
that are amenable to control analysis.

To realize this goal, we use a “Power Dissipation Method” (PDM) ap-
proach to model the governing dynamics of an overconstrained mechanical
system involving a discrete number of frictional contacts. One can show that
this method almost always produces unique models [7,16] that are relatively
easy to compute, are formally related to the Lagrangian mechanics, and to
which one can apply control system analysis methods. This method produces
first-order governing equations, instead of second order equations that are
associated with Lagrange’s equations.

Assume that the moving body and actuator elements that contact the ob-
ject can be modeled as rigid bodies making point contacts that are governed
by the Coulomb friction law at each contact point. Let q denote the configu-
ration of the array/object system, consisting of the object’s planar location,
and the variables that describe the state of each actuator element. Under
these conditions, the relative motion of each contact between the object and
an actuator array element can be written in the form ω(q)q̇. If ω(q)q̇ = 0, the
contact is not slipping, while if ω(q)q̇ 6= 0, then ω(q)q̇ describes the slipping
velocity.
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In general, the moving object will be in contact with the actuator array
at many points. From kinematic considerations, one or more of the contact
points must be in a slipping state, thereby dissipating energy. The power
dissipation function measures the object’s total energy dissipation due to
contact slippage.

Definition 1. The Dissipation or Friction Functional for an n-contact state
is defined to be

D =
n∑

i=1

µiNi | ω(q)q̇ | (1)

with µi and Ni being the Coulomb friction coefficient and normal force at
the ith contact, which are assumed known.

Assuming that the motion of the actuator array’s variables are known, the
power dissipation method assumes that the object’s motion at each instant is
the one that instantaneously minimizes power dissipation D due to contact
slippage. This method is adapted from the work of [17] on wheeled vehicles.
For a greater discussion of the formal characteristics of the PDM, and a
discussion of the relationship between the PDM and Lagrangian approaches
for such a system, see [7,8].

When one applies the PDM method, the governing equations that result
take the form of a multiple model system.

Definition 2. A control system Σ evolving on a smooth n-dimensional man-
ifold, Q, is said to be a multiple model driftless affine system (MMDA) if it
can be expressed in the form

Σ : q̇ = f1(q)u1 + f2(q)u2 + · · ·+ fm(q)um. (2)

where q ∈ Q. For any q and t, the vector field fi assumes a value in a finite
set of vector fields: fi ∈ {gαi |αi ∈ Ii}, with Ii an index set. The vector fields
gαi are assumed to be analytic in (q, t) for all αi, and the controls ui ∈ R
are piecewise constant and bounded for all i. Moreover, letting σi denote the
“switching signals” associated with fi

σi : Q× R −→ N
(q, t) −→ αi

the σi are measurable in (q, t).

An MMDA is a driftless affine nonlinear control system where each control
vector field may “switch” back and forth between different elements of a
finite set. In our case, this switching corresponds to the switching between
different contact states between the object and the array surface elements
(i.e., different sets of slipping contacts) due to variations in contact geometry,
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Fig. 2. A distributed manipulator with four actuators

surface friction properties, and normal loading. In [7] it was shown that the
PDM generically leads to MMDA systems as in Definition 2 and is formally
equivalent to a kinematic reduction of the Lagrangian formulation of the
equations of motion.

The work in [1] showed that the PDM implies that the governing equations
for a distributed manipulation system are:ẋ

ẏ

θ̇

 = f1u1 + f2u2 (3)

where

f1 ∈


−yi

(xj−xi)sj+(yi−yj)cj
xi

(xj−xi)sj+(yi−yj)cj
1

(xi−xj)sj+(yj−yi)cj

 f2 ∈


sj((xi−xj)ci+yisi)+cicjyj

(xj−xi)sj+(yi−yj)cj
−cicjxi−si(xjsj−(yi−yj)cj)

(xj−xi)sj+(yi−yj)cj
− cos(θi−θj)

(xi−xj)sj+(yj−yi)cj


where ci = cos(θi), si = sin(θi), etc. The input u1 is the input to the closest
actuator to the center of mass, and the input u2 is the input to the second
closest actuator to the center of mass. It should be noted that here the index
notation should be thought of as mapping (i, j) pairs to equations of motion
in some neighborhood (not necessarily small) around the ith and jth actuator.
The transition between the equations of motion determined by actuators i
and j to equations of motion determined by actuators k and l will in general
be determined by the location of center of mass. This in turn leads to the
state space being divided up by transition boundaries between different sets
of equations of motion.

Consider Figure 2, which might represent a portion of a distributed ma-
nipulator near a desired equilibrium point. This region has four actuators
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Fig. 3. Simulation of distributed manipulation when the contact state is known
perfectly. The rectangle represents the center of the object which is actually in
contact with all four of the actuators (Nodes 1-4). The time history progresses
from dark triangles at time 0 to the light triangle at time 10. The bottom three
plots are plots of the X,Y , and θ coordinates against time.

(corresponding to the inputs u1, . . . , u4 and represented in the figure by ar-
rows) located at (±1,±1), all pointed towards the origin. An analysis of this
system using the PDM method shows that the region can be divided into 8
distinct regions, labeled I −VIII, where one contact state holds. These are
separated by 8 boundaries, labeled 0− 2π in increments of π

4 . In each one of
the regions I−VIII a control law is calculated from the Lyapunov function
k(x2 + y2 + θ2) by solving V̇ = −V for ui, where k is some constant to be
chosen during implementation. Therefore, there are eight control laws, each
defined in a separate octant. These control laws can be found in [1].

If these estimated boundaries 0 − 2π are accurate, then the control laws
perform quite well. Figure 3 shows a simulation of the four actuator sys-
tem. The object is indicated by a rectangle, but the reader should note that
although the rectangle is illustrated as being small, the actual body it rep-
resents is in contact with all four actuators at all times, which are denoted
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Fig. 4. Simulation of distributed manipulation when the contact state is estimated
in some open loop manner but is incorrect. The object is only barely stabilized
to the origin due to the contact state being varying from the nominal value. (As
in Fig. 3, the bottom three plots are plots of the X,Y , and θ coordinates against
time.)

in the figure by Nodes 1-4. The initial condition is {x0, y0, θ0} = {.5, 2, π
2 },

and progress in time is denoted by the lightening of the object. The three
plots beneath the XY plot are X, Y , and θ versus time, respectively. This,
and the other simulations, were all done in Mathematica, using Euler inte-
gration in order to avoid numerical singularities when crossing contact state
boundaries. In Fig. 3, the object is stabilized to (0, 0, 0) with no difficulty.

In the simulations the constraints are enforced separately from the control
law, allowing the control to switch at different times from the constraints. In
particular, if the boundary that determines the physical contact state is al-
lowed to vary while the control laws only change at the estimated boundaries
0 − 2π, then the performance degrades substantially. Starting the object at
an initial condition of {x0, y0, θ0} = {.5, 2, π

2 }, Fig. 4 shows this degradation
in comparison to Fig. 3, although the system is still stable. In the case of
Fig. 4, the controller is assuming that the contact state changes when the
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center of mass of the object crosses the line x = 0, whereas the contact state
is actually changing when the line x = −0.3y is crossed. This is precisely the
difficulty fixed by estimating the contact state on-line, as shown in Section 4.

4 Hybrid Observability and Supervisory Control
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Fig. 5. A supervisory control system

Efforts in the adaptive control community have already created a frame-
work appropriate to addressing the problem of estimating contact state. In
particular, supervisory control (as in [4,5] and elsewhere) is an effective tech-
nique to use when a system is a linear multiple model system. Fortunately,
our system, when reduced to a kinematic system using the power dissipation
method, is a first order system with constant vector fields. (In fact, not only
is it linear, it does not even have drift.) Hence, it is a particularly trivial
multiple model system. With very little modification (which is not explored
in-depth here but covered in [8]), this supervisory framework easily answers
how to estimate the current contact state based on the output of the system.
Moreover, it would be quite straight forward to adapt this to a second order
system in a case where the kinematic reduction used in Section 3 (using the
power dissipation method) is not possible.

The basic idea in supervisory control is that if there is a family (finite
or possibly countably infinite) of plants Pσ indexed by σ representing the
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dynamics, then one can choose controllers appropriate to each Pσ and orches-
trate a “switching” between these controllers such that the resulting system
is stable. Traditionally, this is a technique where σ is constant but unknown,
but it has been shown that given certain conditions on the type of environ-
mental “disturbance” switching allowed to occur in an MMDA system, many
of the results in [4,5] still apply. In particular, a result in [8] shows that for a
family of plants Pσ and associated controllers Cσ the multiple model system
is stable even if the environment causes the system to switch between plants,
provided it does so sufficiently slowly on the average, which will be discussed
shortly.

Consider the block diagram representation of a supervisory control sys-
tem found in Fig. 5. Denote the set of possible admissible plants by P. Each
model in P represents a contact state of the overconstrained system. Assume
that associated with each plant Pσ coming from P there is a known stabilizing
controller Cσ. Denote the set of these controllers by C. To determine which
model in P most closely “matches” the actual model, the input-output rela-
tionships for all the plants in P will need to be estimated. Hence, the need for
the estimator, denoted by E, which will generate errors between the predicted
output for each plant and the actual output of the multiple model system.
These errors will then be fed into the monitoring signal generator, denoted by
M, which will provide monotone increasing signals µp. The monitoring signal
will be fed into the switching logic, denoted by S, which will then determine
by means of a switching signal, σc, which controller to use to control the sys-
tem output. Call the triple (S, M, E) the supervisor. Details on the specifics
of the supervisor can be found in [8]. Although the choice of supervisor made
here (for the purposes of the simulations) is a scale-independent hierarchi-
cal supervisor [4,5], there are many variations in the literature on this idea.
Additionally, there is an environmental signal generator D creating σe. D rep-
resents the externally driven switches in contact state that we would like to
estimate. Lastly, denote by Nσe

(t0, t) the number of switches σe experiences
during time [t0, t).

For our purposes it is sufficient to note that the supervisory control sys-
tem, as described, is stable so long as 1) each controller Cσ stabilizes its
associated plant Pσ, 2) the estimator tracks the contact state well, and 3)
the supervisor switches fast enough to ensure convergence without switching
so fast as to induce instability. This last requirement is formalized in the
following assumption.

Assumption 1 Assume σe switching is “slow on the average,” i.e.,

Nσe
(t, τ) ≤ N0 +

t− τ

τAD

where N0 > 0 is called the “chatter bound” and τAD is called the “average
dwell time.”
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With Assumption 1 in place, it is possible to prove the following propo-
sition.

Proposition 1. For the distributed manipulation system described in Sec-
tion 3, for any contact state boundaries and for any average dwell time τAD

there exists a supervisor such that the resulting system is exponentially stable
to the origin.

Proposition 1 indicates that if the contact states change slowly enough and
feedback is fast enough, then the system can be controlled by estimating the
contact state on-line. This means that one does not have to concern oneself
with the friction model to establish where switching occurs, as was done
previously in Section 3 in order to derive a control law. Instead, the contact
states can change arbitrarily, so long as they do so sufficiently slowly on the
average. It would be useful to know if a combination of physical geometry
and controller choice can guarantee that this property holds, but for now we
leave it as a standing assumption.

Now apply this supervisory approach to the four actuator array from
Section 3. Replace the boundary x = 0 with the boundary x = −0.3y, and
allow the estimator E to estimate the contact state and the supervisor S to
orchestrate the controller. In this case (found in Fig. 6) the performance is
considerably better than that found in Fig. 4 and resembles the performance
found in Fig. 3. However, there are several important characteristics missing
from this simulation. First, there is no noise in the output of the system, and
it would be useful to know what the sensitivity of this nonsmooth system
is to such output noise. Secondly, there is no time delay, which will almost
certainly play a substantial role in the dynamics near the origin.

5 Conclusions

In this paper we have introduced the problem of estimating contact states for
overconstrained systems and have offered a solution that is based on adaptive
control techniques developed in [4,5] and elaborated on in [8]. The problem of
contact state estimation is clearly important for systems in which stick/slip
phenomena play a dominant role. Indeed, for the distributed manipulation
experiment described here, manipulation tasks are actually impossible with-
out the constant trade-off between sticking and slipping. Ultimately, the an-
alytical techniques presented here should be extended to the more geometric
setting of grasping and manipulation in the presence of gravitational forces.
In the meantime, these results will be implemented on a version of the ex-
periment discussed in Section 2.

Despite the validity of the estimation techniques presented here, more
work must be done to make these methods more computationally efficient.
In the supervisory control approach, every model must be integrated forward
in time. In the case of the four wheel manipulator there are 8 constraints,
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Fig. 6. Simulation of distributed manipulation when the contact state is estimated
on-line, using the supervisory control methodology. Here the performance is much
closer to that seen in Fig. 3, the case where our knowledge of the state is perfect.
(As in Fig. 3, the bottom three plots are plots of the X,Y , and θ coordinates against
time.)

leading to 28 possible dynamic equations of motion. Utilizing the kinematic
reduction found in [7], these can be reduced to 8 total states, a tractable
number for the supervisor. However, if the number of actuators is large, or if
the system does not satisfy the conditions to be kinematically reducible (as is
likely the case in most grasping problems), then the traditional supervisory
approach will surely fail. A potential solution to this is to serially test models
rather than testing them in parallel, provided they satisfy some sort of a priori
known hierarchy. This method will require the additional characteristic of
scaling the gains on the controller down whenever the current model chosen
by the supervisor is not predicting the output well. Proving stability of such
techniques is non-trivial and is the focus of ongoing study.
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