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Abstract— Hybrid dynamical systems with impacts typically
have controls that can influence the time of the impact as well
as the result of the impact. The leg angle of a hopping robot
is an example of an impact control because it can influence
when the impact occurs and the direction of the impulse. This
paper provides a method for computing an explicit expression
for the first derivative of a cost function encoding a desired
trajectory. The first derivative can be used with standard
optimization algorithms to find the optimal impact controls for
motion planning of hybrid dynamical systems with impacts.
The resulting derivation is implemented for a simplified model
of a dynamic climbing robot.

I. INTRODUCTION

Running, hopping and juggling robots are examples of
hybrid dynamical systems with impacts (HDSI). These sys-
tems experience continuous dynamics until they undergo
an impact, resulting in a switch in the dynamics and/or
a discontinuity in the state. Typically these systems have
controls that can influence the time of the impact as well as
the result of the impact. An example impact control could
be the leg angle prior to impact for a hopping robot: the leg
angle determines when the impact occurs and influences the
angle of the impulse due to the impact. This paper addresses
motion planning with impact controls for a particular class
of HDSI.

Consider a hybrid dynamical system with impacts, de-
scribed by the equations:

ẋ = f(x, u, t) when (x, u, ξ) �∈ S (1)
x+ = ∆(x, u, ξ) when (x, u, ξ) ∈ S (2)

where x ∈ X is the state of the system, f represents
the continuous dynamics, S is the impact surface, and ∆
is an impact map that instantaneously maps a pre-impact
condition to a post-impact state x+. The controls consist of
the continuous-time control u ∈ U and the impact control
ξ ∈ Ξ. The impact control ξ may affect both the impact map
∆ (e.g., control impulses applied at the impact time) as well
as the time at which an impact occurs. Impacts occur on the
impact surface S , which may be a function of x, u, and/or
ξ.

An example of an HDSI is a biped robot. The dy-
namics f describe the phases where the robot has zero,
one, or two feet on the ground, and the impact map ∆
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Fig. 1. (a) Image of ParkourBot. (b) A cartoon of the ParkourBot ascending
a chute

corresponds to events when a foot hits the ground. In
this case, the impact surface S depends only on x, i.e.,
S = S(x). Another example is the Monkeybot, a two-
link planar robot that dynamically locomotes on a vertical
steel wall by using (1) a single motor at the joint between
the two links, and (2) passive pivot joints (“hands”) at
the endpoints of the links that can be electromagnetically
connected to or disconnected from the wall. (See, for ex-
ample, a video of an early prototype of the Monkeybot at
http://www.youtube.com/watch?v=0hfwJEVQyeQ.) The dy-
namics f describe phases when zero, one, or two pivot joints
are attached to the wall; the control u is the torque at the
joint motor; and impacts occur when the electromagnet at a
free-swinging hand is clamped to the wall, creating a pivot
joint. In this case, ξ is the set of impact times. Consequently,
the impact surface S is independent of x and u.

In this paper, our interest is in systems of the form (1)–(2)
where the continuous control is either zero (u = 0) or given
by a specified feedback law (u = u(x)). The impact surface
S may be a function of both x and ξ, i.e.,

Σ :

�
ẋ = f(x, t) when (x, ξ) �∈ S
x+ = ∆(x, ξ) when (x, ξ) ∈ S, (3)

where f is assumed to be at least once differentiable with
respect to each input. A sequence of impact controls is given
by ξ = [ξ1, . . . , ξN ]T for N impacts with impact times τ =
[τ1, . . . , τN ]T and post-impact states x+ = [x+

1 , . . . , x
+
N ]T .

Since the continuous control u(x) has been specified, the
HDSI has been converted to a discrete-time problem.

Examples of such systems include:

• Robot parkour. The ParkourBot (see Fig. 1(a)), devel-
oped at Carnegie Mellon, is a mobile robot with two
springy BowLegs that allow it to dynamically locomote



in planar vertical environments with vertical footholds
[1] as shown in the cartoon of Fig. 1(b). A simple model
of this system treats the robot as a point mass in ballistic
flight with state x, plus impacts where one of the two
springy legs bounces the robot off of a foothold. The
impact control ξ consists of the leg angle at impact
and the kinetic energy added to or subtracted from the
system at impact. The impact surface is written S(x, ξ),
as contact with a foothold depends on both the position
of the robot and the angle of the leg.

• Robot juggling. In single-ball “bat juggling,” a robot
arm repetitively bats a ball to achieve a desired vertical
juggling cycle [2], [3]. Treating the ball’s state as x, the
dynamics f consist of the uncontrolled ballistic flight
of the ball, and the impact control ξ is the configuration
and velocity of the batter at impact.

Given a system Σ, the purpose of this paper is to find
a finite sequence of impact controls ξ minimizing a cost
function J encoding the desired behavior of the system.
Standard optimization algorithms utilize first and possibly
second derivatives of the cost function to compute a locally
optimal solution. The second derivative is typically expensive
to compute, so there are many algorithms based entirely on
the first derivative. The first derivative can be difficult to
calculate if the cost function cannot be expressed analytically.
One can imagine approximating the derivative using finite
difference approximation, but such an approach is typically
undermined by numerical instability unless all the differential
equations involved happen to be asymptotically stable.

The primary contributions of this paper are the following:
1) We derive an explicit expression for the derivative of

J with respect to the impact controls ξk. By deriving
explicit expressions for the derivative, we get the
advantage of stable numerical methods for evaluating
trajectories of differential equations. In addition, the
explicit expression for the derivative provides a numer-
ical test of optimality, which is useful for terminating
the optimization algorithm.

2) We apply the results to motion planning for the simpli-
fied model of the ParkourBot, finding impact controls
for a variety of motion goals using a gradient descent
method.

In Section II we place this work in the context of previous
work. Section III gives the problem statement and the nota-
tion used in the paper. Section IV describes the discretized
trajectory of a hybrid dynamical system with impacts. The
cost function and its first derivative are discussed in Sec-
tion V. The impact control optimization is preformed for
several motion goals of the ParkourBot in Section VI.

II. RELATED WORK

Robotics applications of HDSI include legged robotic
locomotion and robotic juggling. Raibert and Brown’s pi-
oneering work on legged locomotion showed that a single-
legged robot could produce stable limit cycles and even hop
over obstacles [4]. Hodgins and Raibert developed several

simple controllers to vary the step length of the robot
[5], but noted that precise placement of the foot for one
step may produce uncontrollable motion after several steps.
Real-time planning of a single-legged BowLeg hopper was
implemented experimentally by Brown and Zeglin to traverse
stepping stones by using a best first search graph method [6].
Additionally, mirror laws and recurrent control theory has
been studied as a method for producing asymptotic stable
limit cycles of HDSI in the area of juggling robots [2], [3].

Brogliato and Rı́o developed a framework to study the
controllability and stability of hybrid mechanical systems
with impacts [7]. The controllability of hybrid mechanical
systems with time controlled impacts such as the Monkeybot
was studied by Bullo and Zefran with a geometric approach
using affine connections and linear jump transition maps [8].
The method provided in this paper optimizes impact controls
for planning of multiple impacts of HDSI that do not have
direct control of the impact time, but this method does not
investigate the controllability and stability of these systems.

The motivation for the work in this paper is drawn
from switching time optimization for systems with complete
control of the switching times [9], [10], [11]. The systems
considered in this paper are different in that they do not
necessarily have direct control of the impact times. The
work in [9] and [11] utilizes the fundamental principles of
calculus to calculate the first and second derivative of the cost
with respect to the switching times for switched systems and
switched systems with impulses, respectively. In this paper,
a similar approach is used to derive the first derivative of the
cost with respect to a more general class of impact controls.
By using this method, we have an explicit expression for the
derivative of the cost, resulting in a stable numerical method
for standard optimization algorithms.

III. PROBLEM STATEMENT

Given a system Σ specified by (3) with initial conditions
x(τ0) = xinit, we seek a locally optimal sequence of impact
controls ξ that minimizes a cost function J encoding the de-
sired trajectory for N impacts. The cost function considered
in this paper is a discrete-time function that weights each of
the N post-impact states:

J(xinit, ξ) =
N�

k=1

Lk(x
+
k , τk), (4)

where x+
k is the kth post-impact state. Note that this cost

function does not directly include the impact controls; how-
ever, the method presented in this paper can be modified
easily to to include the controls in the cost function.

For example, the goal could be to track a desired set of
post-impact states:

Lk(x
+
k , τk) =

1

2
(x+

k − x+
k,d)

TQk(x
+
k − x+

k,d), (5)

where x+
k,d is a desired post impact state and Qk is a positive-

definite symmetric weighting matrix.
The numerical optimization in this paper is conducted

using a standard first-order steepest descent algorithm [12].



In order to implement this algorithm, the first derivative of
the cost with respect to the impact controls is required.

A. Notation
This paper uses operator notation Dg(x)◦∂x to represent

derivatives, where this notation reads Dg(x) operates on the
perturbation of x, ∂x. An example of this operator notation
is A(·) ◦ (x1, x2) for the bilinear map (such as the second
derivative) B(x1, x2) = xT

1 A(·)x2. Operator notation is
used in this paper to simplify the representation of multi-
dimensional derivatives without having to specify the matrix
multiplication such as in the example above.

The full derivative of g(·) with respect to a variable
will be written as Dvarg(arg1, arg2, . . .) ◦ ∂var. Note
that multiple arguments may be differentiable by var
in this notation, therefore, chain rule may be necessary.
Dng(arg1, arg2, . . .)◦∂argn is known as a slot derivative in
which g(·) is differentiated with respect to the nth argument.
If the argument is a vector, slot derivatives with respect
to the ith element of the argument will be written as
Dn,ig(arg1, arg2, . . .) ◦ ∂argn,i where n is the argument
and i corresponds to the ith element of the nth argument.
For example, the full derivative of f(x, y(x, z)) with respect
to x is given by

Dxf ◦ ∂x = D1f ◦ ∂x+D2f ◦Dxy ◦ ∂x,

where the dependencies are not written for the individual
functions in order to save space.

Sometimes we will write the state x(t) as x(ξ, t) to be
explicit about the dependence on the impact controls.

IV. DISCRETE TRAJECTORY

Since the continuous-time controller u(x) is assumed to
be given, the system can be represented by discrete-time
states x−

k at time τ−k and x+
k at time τ+k which correspond

to the pre-impact and post-impact states, respectively. Note
that τ−k = τ+k , but this notation will be used to specify just
before impact and just after impact.

The initial condition and initial time will be denoted as
x0 and τ0. Note that any derivative of these quantities will
be zero, since they are assumed to be given.

The pre-impact state x−
k can be calculated by integrating

(3) from x+
k−1. This can be written using the fundamental

theorem of calculus as
x−
k ≡ x(ξ, τ−k ) =

∆k−1(x
−
k−1, ξk−1) +

� τ−
k

τ+
k−1

fk−1(x(s), s)ds.
(6)

The kth post-impact state x+
k from (3) is given by

x+
k = ∆k(x

−
k , ξk). (7)

The kth impact time is given as a function of an impact
control, a previous state and the time of the previous state,

τk = τk(ξk, x
+
k−1, τk−1), (8)

where x+
k−1 and τk−1 are x0 and τ0, respectively, if k = 1.

For this paper, it is assumed that this expression is known

analytically. If the time of impact expression is not known
explicitly, the time of impact can be computed numerically
with a root-finding method. The derivatives of this expression
with respect to its inputs can be computed analytically
by applying the Implicit Function Theorem and using the
integral representation of the dynamics.

The first derivative of the cost function with respect to the
impact controls depends on the derivative of the trajectory
with respect to each impact control. Since the impact times
depend on the previous states and impact controls, the
Leibniz Integral rule must be taken into consideration when
differentiating the pre-impact state in the integral form as
shown in (6).

V. THE COST AND DERIVATIVE

This section contains the main mathematical result of the
paper. The equations provided in this section rely on a result
derived in the Appendix.

The numerical optimization requires computing J(·) and
DJ(·)◦z, where z is the perturbation. This paper derives an
explicit expression for the derivative of the cost, even when
the differential equations governing the dynamics cannot be
integrated analytically. The derivative of the cost in (4) with
respect to the each set of impact controls, ξi, at impact i is
given by chain rule:

DξiJ(xinit, ξ) ◦ ∂ξi =
N�

k=1

�
D1Lk(x

+
k , τk) ◦Dξix

+
k ◦ ∂ξi

+ D2Lk(x
+
k , τk) ◦Dξiτk ◦ ∂ξi

�
.

(9)

By investigating the structure of (9), the derivative for each
impact control can be concisely expressed. It will be shown
that only a few things need to be computed for each impact
in order to compute all the derivatives.

Equation (9) can be expressed in matrix notation as:

DξiJ(xinit, ξ) ◦ ∂ξi =
N�

k=1

�
D1Lk(x

+
k , τk)

D2Lk(x
+
k , τk)

�T �
Dξix

+
k ◦ ∂ξi

Dξiτk ◦ ∂ξi

�
.

(10)

We need a way to compute these right hand side terms. To
do so, note that these terms are simply the derivative of the
impact map and the impact time with respect to the impact
control:

�
Dξix

+
k ◦ ∂ξi

Dξiτk ◦ ∂ξi

�
=

�
Dξi∆k(x

−
k , ξk) ◦ ∂ξi

Dξiτk(ξk, x
+
k−1, τk−1) ◦ ∂ξi

�
.

Let
Υi

k = [Dξi∆k(·) ◦ ∂ξi Dξiτk(·) ◦ ∂ξi]
T

Ck =
�
D1Lk(x

+
k , τk) D2Lk(x

+
k , τk)

�
.

The derivative of the impact map and the impact time with
respect to the each impact control is derived in the Appendix.



The results of the derivation are

Υi
k =









k�

j=i+1

Γk−j+i+1



Υi
i k > i (11a)

Υi
i k = i (11b)

0 k < i (11c)
where

Γk =

�
D1∆k(·) ◦ αk D1∆k(·) ◦ βk

(D2τk(·))T D3τk(·)

�

αk = Φk−1(τ
−
k , τ+k−1) + fk−1(x

−
k , τk)(D2τk(·))T

βk =fk−1(x
−
k , τk)D3τk(·)

−Φk−1(τ
−
k , τ+k−1)fk−1(x

+
k−1, τk−1),

and Φ(t, τ) is the state transition matrix [13] calculated from

d

dt
Φ(t, τ) = A(t) ◦ Φ(t, τ),

with A(t) = D1fk−1(x(t), t) and Φ(τ, τ) = I , where I is
the identity matrix.

The derivative of the cost simplifies with (11c) to

DξiJ(xinit, ξ) ◦ ∂ξi =
N�

k=i

CkΥ
i
k. (12)

since the derivative of the cost’s summand is zero for k < i.
To compute the derivative of the cost with respect to each

impact control, we only need to compute Ck,Υk
k,Γk ∀ k =

1, . . . , N . Each derivative is simply a combination (sum and
multiplication) of some or all of these quantities as shown
in (12).

The explicit expression of the derivative in (12) can be
used with stable numerical methods to optimize the impact
control sequence. In addition, the explicit expression for the
derivative provides a numerical test of optimality, which is
useful for terminating the optimization algorithm.

VI. EXAMPLE: PARKOURBOT

The system studied in this example is the two-legged
ParkourBot designed at Carnegie Mellon and depicted in
Fig. 1(a). The ParkourBot is equipped with two BowLegs
and is similar to the one-legged BowLeg hopper in [14].
During flight, the ParkourBot is capable of independently
positioning the leg angles and storing energy by compressing
the spring-like legs. During stance, the stored energy is
converted to kinetic energy. The net amount of energy input
to the system is the difference between the amount of energy
stored and losses due to the impact. By controlling the net
energy input and the leg angles, the robot is capable of
climbing up and down as well as bouncing in place. A
cartoon of the robot climbing is seen in 1(b). (See videos
at http://www.dynaclimb.com/.)

A cartoon of the ParkourBot is shown in Fig. 2. This
example assumes a point mass body, massless legs, hips
located at the point mass and zero stance phase time (instan-
taneous impacts). Impulses act along the leg at impact. It is
assumed that the robot has complete control of the net energy

Fig. 2. Definition of variables for climbing robot example.

input as well as the leg angles. To simplify the example,
the net energy input will be specified. The motion planning
optimization is to determine the locally optimal leg angle
sequence to drive the robot from an initial state to a final
state in a vertical chute.

Three cases are investigated with this example: bouncing
in place with specifying only the final state, bouncing in
place with trajectory tracking and climbing with trajectory
tracking. The purpose of the first two cases is to show the
benefit of the trajectory tracking. The third case illustrates
that the optimization can be used for climbing with constant
non-zero energy input and a constant increase in the vertical
impact location at each impact. Gradient descent with an
Armijo Line search algorithm was used to determine the
locally optimal controls [15].

The ParkourBot’s configuration is the horizontal and ver-
tical coordinates of the point mass denoted as q(t) =
[q1(t), q2(t)]T ∈ Q. The inertial reference frame is located in
the center of the chute with the vertical walls located a dis-
tance d away. The state is given as x(t) = [q(t)T , q̇(t)T ]T ∈
TQ. The free flight dynamics are governed by:

ẋ(t) = f(x(t), t) = [q̇1(t), q̇2(t), 0,−g/m]T ,

where m is the mass and g is gravity. For this example,
m = 1 and g = 1. The legs are assumed to be the same
length, l = 0.3. The angles of the legs, θ, are measured
positive clockwise from the horizontal axis positive to the
right as shown in Fig. 2. This convention was used to have
positive leg angles. For this example, the impact controls are
the leg angles (ξ = θ). The distance from the center to either
wall is given as d = 1+l cos(π/4). The initial condition was
selected to be x(τ0) = [−1,−0.5, 1, 1]T , which produces
period-1 bouncing in place motion for optimal angles of π/4
and 3π/4 for the right and left walls, respectively. This initial
condition was chosen to verify the results of the optimization.

The impact time of (8) can be calculated from

τk(θk, x
+
k−1, τk−1) =

±d− q1(τk−1)− l cos(θk)

q̇1(τk−1)

where the sign of d depends on which wall is impacted. Since
the legs are identical, no labeling of the length and angle is
required.

With the assumptions above, the impact impulse can
only affect the velocity in the direction along the leg. This
velocity will be referred to as the radial velocity (ṙ(t)). The
normal velocity (ṅ(t)) will be the velocity orthogonal to the



leg. With the leg angle measured positive in the clockwise
direction, the radial and normal velocities can be calculated
with a change in coordinates given by

�
ṅ(τ−k )
ṙ(τ−k )

�
=

�
sin(θk) cos(θk)

− cos(θk) sin(θk)

� �
q̇1(τ

−
k )

q̇2(τ
−
k )

�
.

The post-impact velocities for impact k are given by

�
ṅ(τ+k )
ṙ(τ+k )

�
=

�
ṅ(τ−k )�

ṙ(τ−k )2 + 2Ek
m

�
,

where Ek is the net energy input to the system. Note that with
this representation, the pre-impact radial velocity is assumed
to be negative and the post-impact velocity is assumed to be
positive.

The impact map is then given by

∆k(x(τ
−
k ), θk) =

�
q1(τ

+
k ), q2(τ

+
k ), q̇1(τ

+
k ), q̇2(τ

+
k )

�T

=





1 0 0 0
0 1 0 0
0 0 sin(θk) − cos(θk)
0 0 cos(θk) sin(θk)









q1(τ
−
k )

q2(τ
−
k )

ṅ1(τ
+
k )

ṙ2(τ
+
k )





The required derivatives and variables defined in Section
V as well as the example simulations were carried out in
Mathematica. The optimizations were conducted until the
norm of the gradient was less than 10−5.

A. Bounce In Place: Terminal Cost

This example case considers the terminal cost function
governed by

J(xinit, ξ) =
1

2
(x+

N − x+
N,d)

TQN (x+
N − xN,d),

where QN is the identity matrix. The goal of the op-
timization is to find the optimal leg angles that take
an initial state to the same state (with appropriate signs
on the horizontal position and velocity) after N = 6
bounces. The initial leg angle controls were given as
ξ = θ = [π/5, 4π/5, π/5, 4π/5, π/5, 4π/5]T with ini-
tial cost 0.0026. The optimal angles after 1006 iterations
were ξ∗ = [0.677, 2.484, 0.571, 2.484, 0.676, 2.356]T . The
final cost and norm of the gradient were 1.52x10−9 and
9.96x10−6, respectively. A plot of the configuration (vertical
vs. horizontal positions) for the initial and optimal angles
can be seen in Fig. 3(a) and Fig. 3(b), respectively, with the
impact sequence marked.

It can be seen that the robot bounces in place at a lower
potential energy state until the last bounce. This is most
likely poor planning because the robot relies mainly on
the last bounce to reach the desired state. Also, the robot
will be moving faster at a lower potential energy state,
which may be an issue for stability. This trajectory is a
logical outcome because no weighting was associated with
the previous impacts.

B. Bounce In Place: Incremental Cost

This example case considers trajectory tracking with the
incremental cost described in (4):

J(xinit, ξ) =
N�

k=1

1

2
(x+

k − x+
k,d)

TQk(x
+
k − x+

k,d),

where Qk is the identity matrix and x+
k,d is the desired

post-impact state at each impact. The number of impacts
and the initial angles were the same as those in the pre-
vious case. With this cost function, the initial cost was
0.286. The optimal angles after 65 iterations were ξ∗ =
[0.785, 2.356, 0.785, 2.356, 0.785, 2.356]T , which are close
to the expected optimal angles. The final cost and norm of
the gradient were 8.6x10−12 and 8.5x10−6, respectively. A
plot of the configuration (vertical vs. horizontal positions)
can be seen in Fig. 3(c) with the impact sequence marked. It
can be seen that the robot bounces in place for each impact.
This is most likely a more stable trajectory than that of the
last case.

C. Climb: Incremental Cost

This case uses the same cost function as the previous
case, except that Qk = diag(0, 1, 0, 0) to only weight
the position of the vertical coordinate for each impact.
For constant vertical climbing, q2 should increase by the
same amount at each impact. The constant energy input
for each impact was selected to add the required gain in
potential energy (mgh) for a single bounce. The desired
vertical position of the first bounce was selected to be at
the same height as the initial condition. All other desired
vertical positions were located (k − 1)h above the initial
condition, where k is the number of impacts from the initial
state. For h = 0.15 and 6 bounces, the initial angles of
ξ = [π/5, 4π/5, π/5, 4π/5, π/5, 4π/5]T produced an initial
cost of 0.0404. The optimal angles after 39 iterations were
ξ∗ = [0.697, 2.572, 0.554, 2.588, 0.556, 2.509]T . The final
cost and norm of the gradient were 0.000157 and 6.3x10−6,
respectively. A plot of the configuration (vertical vs. hori-
zontal positions) for the initial and optimal angles can be
seen in Fig. 4(a) and Fig. 4(b), respectively, with the impact
sequence marked. It can be seen that after the first bounce the
robot climbs at a constant increase in the vertical direction.

VII. CONCLUSION AND FUTURE WORK

The work presented in this paper formulates an expression
for the first derivative of the cost with respect to impact
controls for hybrid dynamical systems with impacts. This
derivative can be utilized in standard gradient descent meth-
ods as shown with the ParkourBot example. It has been
shown that second-order methods converge faster to optimal
solutions [9]; therefore, the next step in this research will
be to derive the second derivative of the cost with respect
to the impact controls. Another next step for this research is
to embed the optimization on an experimental robot such as
the ParkourBot to plan impact controls in real time.



(a) (b) (c)

Fig. 3. Bouncing in place with impacts numbered. (a) Trajectory with initial angles. (b) Trajectory with optimal angles for specified final state. (c)
Trajectory with optimal angles for trajectory tracking.

(a) (b)

Fig. 4. (a) Climbing with initial angles. (b) Climbing with optimal angles.
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APPENDIX

This Appendix contains the derivation for the derivative
of the impact map (∆k(·)) and the time of impact (τk(·))
given by (11).

Recall

x−
k = x(ξ, τ−k )

x+
k =∆k(x

−
k , ξk)

τk =τk(ξk, xk−1, τk−1)

In this derivation, the left hand side of the expressions above
will be used as inputs to functions. Since we are using slot
derivatives, the right hand side will be used when computing
derivatives to explicitly indicate the inputs.

The derivative of the impact map requires chain rule of
multiple arguments:

Dξi∆k(x
−
k , ξk) ◦ ∂ξi =

D1∆k ◦Dξix(ξ, τ
−
k ) ◦ ∂ξi +D2∆k ◦ dξk

dξi

(13)

The derivative of an impact time with respect to ξi is

Dξiτk(ξk, x
+
k−1, τk−1) ◦ ∂ξi = D1τk ◦ dξk

dξi
+D2τk ◦Dξi∆k−1 ◦ ∂ξi+D3τk ◦Dξiτk−1 ◦ ∂ξi

(14)

Each impact control is assumed to be independent of all
other impact controls:

dξk
dξi

=

�
∂ξi if k = i;
0 if k �= i.

The derivatives in (13) and (14) depend on the relationship
between k and i.

For k �= i, (13) and (14) reduce to

Dξi∆k(x
−
k , ξk) ◦ ∂ξi = D1∆k ◦Dξix(ξ, τ

−
k ) ◦ ∂ξi (15)

Dξiτk ◦ ∂ξi =D2τk ◦Dξi∆k−1 ◦ ∂ξi
+D3τk ◦Dξiτk−1 ◦ ∂ξi.

The above equation can be rewritten in matrix form as

Dξiτk ◦ ∂ξi =
�
(D2τk)

T D3τk
�
Υi

k−1. (16)

The first derivative of x−
k with respect to each impact

control ξi is given by

Dξix(ξ, τ
−
k ) ◦ ∂ξi = Dξx(ξ, τ

−
k ) ◦Dξiξ ◦ ∂ξi

+D2x(ξ, τ
−
k ) ◦Dξiτk ◦ ∂ξi.

(17)

where D2x(ξ, τ) = f(x(τ), τ).
By considering the independence of each impact control,

the first term in (17) reduces to the first slot derivative
corresponding to the ith element of ξ, D1,ix(ξ, τ) ◦ ∂ξi.

Dξix(ξ, τ
−
k ) ◦ ∂ξi = D1,ix(ξ, τ

−
k ) ◦ ∂ξi

+fk−1(x
−
k , τk)Dξiτk ◦ ∂ξi,

(18)



The first term in (18) can be found by differentiating (6) with
respect to the impact controls ξi:

D1,ix(ξ, τ
−
k ) ◦ ∂ξi = Dξi∆k−1(·) ◦ ∂ξi

−fk−1(x
+
k−1, τk−1)Dξiτk−1(·) ◦ ξi

+

� τ−
k

τ+
k−1

(D1fk−1(x(ξ, s), s) ◦D1,ix(ξ, s) ◦ ∂ξi)ds,

where the second term is from Leibniz Integral rule. No
Leibniz term is required for the upper limit (τ−k ) since the
upper limit is taken as a constant in the first slot derivative.
By the fundamental theorem of calculus, this can be rewritten
in differential form:
D1,ix(ξ, τ

+
k−1) ◦ ∂ξi =Dξi∆k−1 ◦ ∂ξi

−fk−1(x
+
k−1, τk−1) ◦Dξiτk−1 ◦ ∂ξi

∂

∂t
D1,ix(ξ, t) ◦ ∂ξi =

D1fk−1(x(ξ, t), t) ◦D1,ix(ξ, t) ◦ ∂ξi.

This linear differential equation can be expressed with a
state transition matrix operating on an initial condition [13]:

D1,ix(ξ, t)◦∂ξi = Φk−1(t, τ
+
k−1)◦D1,ix(ξ, τ

+
k−1)◦∂ξi (19)

where Φk−1(t, τk−1) is calculated with A(t) =
D1fk−1(x(ξ, t), t). The initial condition can be written in
matrix form as

D1,ix(ξ, τ
+
k−1) ◦ ∂ξi =

�
I − fk−1(x

+
k−1, τk−1)

�
Υi

k−1

(20)
where I is the appropriately sized identity matrix.

For k �= i, equation (18) can be written with (16), (19)
and (20) as

Dξix(ξ, τ
−
k ) ◦ ∂ξi =

Φk−1(τ
−
k , τ+k−1)

�
I − fk−1(x

+
k−1, τk−1)

�
Υi

k−1

+fk−1(x
−
k , τk)

�
(D2τk)

T D3τk
�T

Υi
k−1.

(21)

Equation (21) can be written concisely with αk and βk as

Dξix(ξ, τ
−
k ) ◦ ∂ξi = [αk βk] Υ

i
k−1. (22)

The derivative of the impact map and the impact time can
be expressed in matrix notation by combining (15), (16), and
(22) with Γk:

Υi
k = ΓkΥ

i
k−1,

This is a recursive equation with k monotonically decreas-
ing with each impact. If k < i, this equation terminates at
k = 0. Since the initial condition (∆0) and time (τ0) are
given, Dξi∆0 ◦ ∂ξi = 0 and Dξiτ0 ◦ ∂ξi = 0. This means
that Υi

k = [0, 0]T for k < i, proving (11c).
Now let’s consider k = i. Equation (11b) is trival. Note

that Dξiτk−1◦∂ξi = 0 and Dξi∆k−1◦∂ξi = 0 since k−1 <
i. Equations (13) , (14) and (18) reduce to

Dξi∆k(x
−
k , ξk) ◦ ∂ξi =

D1∆k ◦Dξix(ξ, τ
−
k ) ◦ ∂ξi +D2∆k ◦ ∂ξi

(23)

Dξiτk ◦ ∂ξi = D1τk ◦ ∂ξi (24)

Dξix(ξ, τ
−
k ) ◦ ∂ξi = fk−1(x

−
k , τk)D1τk ◦ ∂ξi (25)

It assumed that we have the explicit forms of ∆i and τi,
which we can differentiate with respect to ξi. This means
that we can calculate Υi

i. This means that if k > i, Υi
k is

non-zero and is given by

Υi
k =




k�

j=i+1

Γk−j+i+1



Υi
i.

This proves (11a) and completes the proof.
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