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Abstract— Complexity, cost, and power requirements for
actuation of individual robots are large factors in limiting
the size of robotic swarms. Here we present a prototype
robotic system that allows for externally powered motion in
2D without sacrificing individual autonomy, which simplifies
the robot hardware, possibly enabling larger swarm sizes. This
is accomplished using a table surface that is moving in an
orbital fashion, and where robots can move to any point on
the table surface simply through a series of carefully timed
attachment and detachment steps. We present a model for the
robot’s motion, and use this model to create a motion controller
that allows the robot to move from its current position to any
other position on the table in approximately a straight line. We
show this controller working in simulation as well as on an
experimental hardware system.

I. INTRODUCTION

Traditionally, robots used for swarm applications can
independently control their position in the environment using
on-board power, often in the form of batteries, coupled
with multiple on-board actuators such as electric motors.
This use of multiple self-powered actuators significantly
contributes to a robot’s complexity, as approximated by
part count, hardware cost, assembly time, and stored energy
requirements. This greatly contributes to limiting the size of
robotic swarms, currently on the order of 100-1000 robots
[1]–[3].

One approach that could reduce the complexity of a swarm
robot, and therefore enable larger swarm sizes, is to use an
apparatus that can create external forces which are utilized by
robots for individual motion. While the apparatus to create
these forces will contribute to the complexity of the over-
all system, where system complexity is (robot complexity
∗ number of robots + apparatus complexity), it may be
possible to scale this type of system to larger numbers as the
robots may be less complex, and the apparatus complexity
could be a constant or fixed cost if it is shared amongst all
robots.

In past work, researchers have investigated using external
forces to move and/or power robots, however, most are not
able to scale to large numbers of independently controlled
and autonomous robots. There are many approaches that
move a passive robot, often on the micro-scale, through the
use of external fields such as magnetic [4] or electro-static
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Fig. 1. Picture of the experimental system. A 40 cm x 30 cm shake table
with paths (red) of the fiducials taken during orbit overlayed on image (left).
Close up of robot (2 cm x 2 cm) with attached fiducials (right).

[5]. While this enables the robots to be very small, it does
not provide autonomous control, and as the robot motion is
controlled only by the external fields, the robot itself cannot
decide its own motion. Additionally, if multiple robots are
present, they will all be exposed to the same field, and will
react and move in nearly identical ways, making it difficult
to control multiple robots with the same external field.

Methods have been developed to take advantage of differ-
ences or variability between robots to allow for independent
control of many robots with the same external field. These
robot differences could be explicitly created, for example
by creating individuals with varying physical properties that
respond to the external field uniquely [5], but there is a limit
to the number of robots that can be created. Another ap-
proach [6] takes advantage of naturally occurring differences
between individuals, but the speed of control decreases as
more robots are used. In both these cases, the individuals
are still under control from the field; they do not make their
own decisions about motion, so they still lack individual
autonomy.

Other approaches use an apparatus that can control many
localized forces on its surface, such as isolated electro-
magnetic fields or vibration [7], [8]. As these apparatuses
generally address each location to be controlled individually,
the complexity of the apparatus will increase as more robots
are used and therefore require more addressable locations.
In these systems, the individuals are still not autonomous
as their motion is still solely decided by the external field
applied to them.

Other systems use stochastic forces, such as thermal
motion, random shaking, or fluid mixing [9]–[11] to power
the movement of individuals. Generally the apparatus for
applying stochastic forces is scalable to larger numbers,
however, the motion of individuals is not controlled. Some



stochastic systems have control whether a robot is moving or
not, for example [14], but not its direction, and an individual
cannot be guaranteed to reach a desired location in a bounded
amount of time.

One approach makes use of external forces to reconfigure a
group of modular robots [12], where all robots are on a table
moving in an orbital manner, and robots can use this orbital
force to rotate from one docking site to an adjacent one. This
is the most similar related work to the work discussed here.
The main difference is that the work in [12] only allows
robots to reconfigure, they are not independently mobile,
where the work discussed here allows each robot to move as
a mobile robot.

We will present a robot that uses externally powered
locomotion, but is autonomous and capable of controlled
motion in 2D, with no theoretical limit to the number of
robots. The robot and apparatus are described in section
2, analysis of motion and position control is described in
section 3, and experimental tests of this controller in real
and simulated systems are presented in section 4. A video
demonstrating the results of this work is included in the
supplementary files.

II. HARDWARE AND SIMULATION

Similar to the approach in [12], the approach described
here uses an orbital shake table to apply an external force to
the robots. This table has a flat 2D surface that moves in an
orbital manner, where the axis of orbit is normal to the table,
see fig. 1. The robots sit on this surface, and have the ability
to strongly attach to the surface below, or release from it. If
attached they move in a circular path, and if released, their
motion is a function of their velocity at release, their inertia,
and the friction between the robot and the table surface. By
controlling when it attaches and detaches from the table, a
robot can control its motion along the table surface, see fig. 2
for an example of this motion in both the real and simulated
system. To analyze and test the behavior of this robot system,
we used both experimental hardware, as well as a physically
realistic simulation.

A. Hardware

The table consists of a steel plate mounted to an orbital
shake table, see fig. 1, commonly used for mixing liquids.
The table orbits at approximately 3.8Hz and has an orbital
diameter of 22mm. To attach to the table, the robot, shown in
fig. 1, uses an electro-permanent magnet (EPM), described
in [13], which is mounted on its bottom in contact with the
table. The EPM can be switched on or off by applying 20V
across its coil for 80 µs creating a brief current pulse of
approximately 3A. By controlling the direction of current, the
magnetic field of the EPM can be switched on or off, where
the desired field is maintained with no power consumption
until the next switching event. When the field is on, the robot
is pulled strongly to the table surface, quickly and firmly
attaching it to the table surface. When the field is off, the
robot detaches from the table.

Fig. 2. Example motion path of robot moving in a straight line in simulation
(top) and hardware (center). The path for hardware is measured using camera
tracking. The phase, or rotation angle of the table, along with the robot
control signal is shown in (bottom). The time marked in gray is time where
the robot is detached, and white is the time where the robot is attached.

The robot is powered by a 110mAh 3.4V lithium battery,
and the battery voltage is increased to 20V with an on-board
boost regulator. An H-bridge is used to connect the 20V to
the EPM and control the direction of current. The H-bridge
is controlled by an Atmega micro-controller, which gives
the robot autonomy in switching the EPM on and off, and
therefore autonomy in its motion. In the ideal case (ignoring
electrical losses and micro-controller power usage), the bat-
tery can supply enough energy for approximately 300,000
switching events. Given the table orbit radius, this is enough
to allow the robot to move approximately 3.3 kilometers.

The prototype robot has no sensors; however, the robot
and the orbital shake table are marked with fiducials to track
the position of the robot as well as the table. This tracking
is not used for controlling the robot; it is used solely for
capturing experimental results. All figures in this paper of
robot experiments extract these marker positions from video
to show the robot’s position on the shake table surface.

B. Simulation

A physics based simulation was also created to aid in
testing the control and design. To simulate the robot’s
motion on the shake table, it is modeled as a point mass
with Coulomb friction between the robot’s bottom and the
shake table, and the friction is isotropic. The table’s rotation
frequency is constant. The properties of the system: robot
mass (5 grams), magnetic attachment force (5 Newtons),
coefficient of friction (0.31), table frequency (3.8 Hz), and
rotation diameter (0.022 meters), are all chosen to closely
match the real system. A robot has two behaviors: attach
to the table and detach from the table. When the robot is
attaching to the table, the normal force between the robot



and the table surface is the combination of gravity and
the magnetic attraction force, and when robot detaches the
normal force is only due to gravity. The simulated robot runs
an autonomous controller that can switch between these two
states instantly.

III. POSITION CONTROL

When a robot releases from the orbiting table, it will
begin to move relative to the table surface. This motion is a
function of the angular phase of the table orbit at release,
the table’s frequency of motion, the radius of the table’s
orbit, the robot’s mass, and the friction between the robot
and the table surface. Here we will describe the robot’s
motion after release in terms of these variables, as well as
present a method to control the robot so that the path it takes
approximates a straight line towards any goal location on the
table surface.

A. Motion Description

The analysis of the robot trajectory is essentially the
analysis of the relative motion between the robot and the
table. To describe this relative motion problem we introduce
two reference frames:

1) The world frame: s which is fixed in the space, and
has an origin in the center of the table, which does not
move with the table’s orbital motion.

2) The table frame: T which is attached to the table,
origin is the center of the table surface, and moves
with the table surface during its orbital motion.

First, consider the scenario that there is ideal friction between
robot and table, which means there is zero friction when the
robot moves relative to the table, and there is infinite friction
when it attaches to the table, i.e., the robot can move friction-
free and stop on the table immediately. The table’s motion
is expressed in the s frame as follows:

xts = r cos(wt)

yts = r sin(wt)

where, r is the table orbit radius and w is angular velocity.
We will use the term orbital phase to represent the current
angle of the table in its rotation. The instantaneous velocity
of any point on the table in the s frame follows accordingly:

vxts
= rw cos(wt+ π/2)

vyts
= rw sin(wt+ π/2)

Combine the above equations to compute the robot’s motion
in frame s at time t after detaching the table at time t0:

xrs = (t− t0)wr cos(wt0 + π/2) + x0s

yrs = (t− t0)wr sin(wt0 + π/2) + y0s

where (x0s, y0s) is the robot’s position in frame s at time
t0. The robot’s position in frame T follows accordingly:

xrT = xrs−xts = (t−t0)wr cos(wt0+π/2)+x0s−r cos(wt)

yrT = yrs−yts = (t−t0)wr sin(wt0+π/2)+y0s−r sin(wt)

Substituting ∆t = t− t0 and φ = wt0 + π/2, we get:

xrT = ∆twr cos(φ) + x0s + r cos(w∆t+ φ+ π/2)

yrT = ∆twr sin(φ) + y0s + r sin(w∆t+ φ+ π/2)

Next, we introduce a more realistic model of friction to
the system where friction is modeled as Coulomb friction:
f = µFb, in which µ is the friction coefficient between the
robot and the table, and Fb is the normal force. The robot
motion in frame s can be computed numerically with the
following ODEs:

ẍrs = −µFb

m
(

ẋrs − ˙xts√
(ẋrs − ẋts)2 + (ẏrs − ẏts)2

)

ÿrs = −µFb

m
(

ẏrs − ˙yts√
(ẋrs − ẋts)2 + (ẏrs − ẏts)2

)

with the initial conditions of

ẋrs|t=t0 = vxts
|t=t0

ẏrs|t=t0 = vyts
|t=t0

xrs|t=t0 = xts|t=t0

yrs|t=t0 = yts|t=t0

in which t0 is the time when the robot detaches, and m is
the robot’s mass. Using the numeral solution we can compute
the robot’s motion in frame T . Substituting ∆t = t− t0 and
φ = wt0 + π/2, the robot’s motion in frame T is:

xrT = xrs + r cos(w∆t+ φ+ π/2)

yrT = yrs + r sin(w∆t+ φ+ π/2)
(1)

B. Motion Controller

The characteristics of the robot’s cycloid-like motion on
the table makes the robot difficult to control as it cannot
move on a straight line path. Here we will introduce a
controller where given a robot’s starting position on the
table A and a desired goal position B, the controller will
automatically generate a series of release and attachment
times to move the robot to position B as quickly as possible
while never moving farther than a user defined distance, or
offset tolerance α, from the line segment AB. To simplify
the controller, we also add the following constraints:

1) The robot must eventually stop exactly at the goal point
B.

2) Every time the robot attaches to the table during the
motion, it must stop exactly on the line segment AB.

At the core of the robot controller is a precomputed array
that specifies that for a given offset tolerance α, at what
phase of the table’s orbit it should release, how long until it
should re-attach, and how far in the desired direction it will
have traveled. It is assumed that the friction, µ, table orbit
radius r, and table orbit angular velocity, w, are fixed and
known. We start by first making the simplifying assumption
that the angle, γ, between the desired trajectory, AB, and
the X axis in frame t is zero.

The array is iteratively generated by the following process:
with the robot starting at position (0, 0), choose a table phase,



Fig. 3. Graphical representation of the precomputed controller array
showing the table phase to detach, time between detach and attach (top),
and expected distance traveled towards the goal point after re-attachment
(bottom).

Ω, ranging from 0 to 2π at a step size ε, and use that Ω to
initialize the ODE equations (1), and using the numerical
method compute the robot’s path when it releases at table
phase Ω until either it crosses over the x axis, or the table
orbits a full rotation without the robot crossing the x axis.
During each of these numerical simulations using the ODEs,
we record the maximum distance the robot travels in the y
axis direction, and its new x position when the x axis is
crossed. If the x axis is crossed, and the new x position
is greater than its starting x position, zero, we place an
entry in the array at the position corresponding to the robots
maximum distance traveled in the y axis direction. The entry
includes the starting table phase Ω, the change in x position,
and time taken from release until the x axis is crossed, ∆t .
This array is generated offline and then given to the robot(s).
A graphical representation of this array for the parameters
of the experimental system is shown in fig. 3.

To move one step (one detach, attach cycle) towards the
goal potion B, the robot first computes the angle, γ, between
the desired trajectory, AB and the x axis direction, as well
as the remaining distance from its current position to B. It
looks into the array at the entry for the desired α and finds
the distance it will move toward B. If that distance is less
than the current distance to B, then the robot will detach for
the time specified, ∆t, in the array entry, detaching at the

Fig. 4. Simulation (top) and experimental (center) paths for robot using
different offset values α to move in a straight line along the x axis. The robot
chooses a smaller step size for the final step (bottom) to avoid overshoot of
goal location in experiment (red) and simulation (blue).

table phase specified at the entry, plus γ. If the distance in
the array entry for α is greater than its current distance to
B, i.e. the robot would move past B, then the robot searches
the array by step size, finds the biggest step size which is
smaller than the current distance between the robot and the
destination B. It uses the table phase specified at that entry,
plus γ, as well as the time specified, ∆t, in that entry, to
move, stopping on the point B. Upon completing one step,
the robot updates its current position based on the distance
it expected to move, and the direction of motion, and then
progresses to the next step. See fig. 4 for examples of robot
motion in simulation and experimentally using different α
values, as well as changing step size to avoid overshoot of
the goal location.

IV. EXPERIMENTAL RESULTS

To test the controller running on the robot hardware, we
tested the robots ability to move in a straight line with
different values for offset tolerance, α, and tasked it with
traversing a complex “N” shaped trajectory. These tests use
a precomputed controller array that uses a friction coefficient
µ of 0.31, which was experimentally measured, a rotation
frequency of 3.8Hz and rotation radius of 0.011m, both of
which can be manually set on the orbital table.

The robot uses its internal clock to keep track of the
table’s current orbital phase; however, since the prototype
robot contains no sensors, it has no way of detecting the
table’s current orbital phase. As a result there will be a
constant offset between the robots prediction of the table
phase and the actual phase; the offset depends on the initial
orbital phase of the table when the robot’s program begins



Fig. 5. Simulation (red path) and real robot (blue path) moving to desired
way-points (shown as black crosses) to create an “N trajectory. The robot
starts in the (0, 0) position.

execution. This constant offset will cause the direction of all
straight line motions to be in an angle that is the desired
angle plus this constant offset. For example, this would
cause the desired “N” trajectory to be arbitrarily rotated. To
help correct for this, prior to starting any motion the robot
briefly blinks an LED to indicate its belief of the table phase
allowing the table phase to be manually adjusted.

For the first set of experiments, the robot was placed
at position (0, 0) and tasked to move in a straight line in
positive x direction, once with α of 1.65mm, and once with
α of 3.3mm. The path taken by the robot was computed
by tracking the attached fiducials and can be seen in fig. 4.
Additionally, the robot was tasked to reach a point using α
of 3.3mm, and the goal point was chosen so that this α value
would cause it to overshoot. The controller correctly chose
a smaller α for the last step to reach the desired point, as
shown in fig. 4.

To test a more complex multi-point trajectory we also
tasked the robot with moving to a series of 5 way-points,
shown on fig. 5, with an α of 3.3mm. The positions of some
way-points did require the robot to make shorter steps to
prevent overshoot of some way-points, for example near the
lower right point of the “N”.

V. DISCUSSION AND FUTURE WORK

Much of the non-ideal behavior of the experimental system
is a result of the current lack of sensing on-board the robot.
As can be seen in the experimental results, especially the
“N” test in fig. 5, the angle of path taken by the robot
can differ from the desired path and may drift over time.
This is the result of the frequency of the table’s orbit
not exactly matching the expected value, which causes the
robot’s prediction of table phase to slowly drift away from
the actual table phase. Fig. 6 shows different runs of the
simulation where the robot initially knows the correct phase

Fig. 6. Simulation runs of a robot creating the “N” trajectory with
mismatches between the table frequency and the robot’s estimation of table
frequency. An error of 0.3% in the robot’s estimated table frequency closely
matches the path of the experimental test.

of the table, but the table frequency differs slightly from
the robot’s predicted table frequency. This results in the
warping of the robot path, and an error of 0.3% in the
robot’s estimated table frequency closely matches the path
of the experimental test from fig. 5. To correct this, future
iterations of the robot will have an on-board IMU, and can
use the accelerometer to accurately measure table frequency,
reducing this type of error.

We also plan on including robot-to-robot sensing and
communication in the next iteration of the robot, allowing
multiple robots to interact in a distributed way. This will be
used to test traditional swarm algorithms in large numbers,
as well as investigate any effects this form of locomotion has
on a swarm system.
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